오래된 질문이지만 실용적인 답이 하나 있다고 생각합니다. 나는 그러한 신경망을 구축하는 방법에 대한 가이드를 보았을 때 바로 우연히 만났고, 예를 들어 파이썬의 randint의 메아리를 보여주었습니다 . 자세한 설명이없는 최종 코드는 다음과 같습니다. 링크가 오프라인 상태가되는 경우 여전히 간단하고 유용합니다.
from random import randint
from numpy import array
from numpy import argmax
from pandas import concat
from pandas import DataFrame
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
# generate a sequence of random numbers in [0, 99]
def generate_sequence(length=25):
return [randint(0, 99) for _ in range(length)]
# one hot encode sequence
def one_hot_encode(sequence, n_unique=100):
encoding = list()
for value in sequence:
vector = [0 for _ in range(n_unique)]
vector[value] = 1
encoding.append(vector)
return array(encoding)
# decode a one hot encoded string
def one_hot_decode(encoded_seq):
return [argmax(vector) for vector in encoded_seq]
# generate data for the lstm
def generate_data():
# generate sequence
sequence = generate_sequence()
# one hot encode
encoded = one_hot_encode(sequence)
# create lag inputs
df = DataFrame(encoded)
df = concat([df.shift(4), df.shift(3), df.shift(2), df.shift(1), df], axis=1)
# remove non-viable rows
values = df.values
values = values[5:,:]
# convert to 3d for input
X = values.reshape(len(values), 5, 100)
# drop last value from y
y = encoded[4:-1,:]
return X, y
# define model
model = Sequential()
model.add(LSTM(50, batch_input_shape=(5, 5, 100), stateful=True))
model.add(Dense(100, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
# fit model
for i in range(2000):
X, y = generate_data()
model.fit(X, y, epochs=1, batch_size=5, verbose=2, shuffle=False)
model.reset_states()
# evaluate model on new data
X, y = generate_data()
yhat = model.predict(X, batch_size=5)
print('Expected: %s' % one_hot_decode(y))
print('Predicted: %s' % one_hot_decode(yhat))
방금 시도했지만 실제로 잘 작동합니다! 오래된 느린 넷북에서 몇 분만 걸렸습니다. 위의 링크와 다른 내 자신의 결과가 있으며 일치가 완벽하지 않다는 것을 알 수 있으므로 종료 기준이 너무 관대하다고 생각합니다.
...
- 0s - loss: 0.2545 - acc: 1.0000
Epoch 1/1
- 0s - loss: 0.1845 - acc: 1.0000
Epoch 1/1
- 0s - loss: 0.3113 - acc: 0.9500
Expected: [14, 37, 0, 65, 30, 7, 11, 6, 16, 19, 68, 4, 25, 2, 79, 45, 95, 92, 32, 33]
Predicted: [14, 37, 0, 65, 30, 7, 11, 6, 16, 19, 68, 4, 25, 2, 95, 45, 95, 92, 32, 33]