내쉬의 고통 (C ++)
내 자신의 내쉬 평형 솔버를 작성해야한다는 사실은 정말 고통 스러웠습니다. 쉽게 이용할 수있는 내쉬 해결 라이브러리가 없다는 것이 놀랍습니다!
#include <fstream>
#include <iostream>
#include <vector>
#include <array>
#include <random>
#include <utility>
typedef double NumT;
static const NumT EPSILON = 1e-5;
struct Index {
int me;
int them;
Index(int me, int them) : me(me), them(them) {}
};
struct Value {
NumT me;
NumT them;
Value(void) : me(0), them(0) {}
Value(NumT me, NumT them) : me(me), them(them) {}
};
template <int subDimMe, int subDimThem>
struct Game {
const std::array<NumT, 9> *valuesMe;
const std::array<NumT, 9> *valuesThemT;
std::array<int, subDimMe> coordsMe;
std::array<int, subDimThem> coordsThem;
Game(
const std::array<NumT, 9> *valuesMe,
const std::array<NumT, 9> *valuesThemT
)
: valuesMe(valuesMe)
, valuesThemT(valuesThemT)
, coordsMe{}
, coordsThem{}
{}
Index baseIndex(Index i) const {
return Index(coordsMe[i.me], coordsThem[i.them]);
}
Value at(Index i) const {
Index i2 = baseIndex(i);
return Value(
(*valuesMe)[i2.me * 3 + i2.them],
(*valuesThemT)[i2.me + i2.them * 3]
);
}
Game<2, 2> subgame22(int me0, int me1, int them0, int them1) const {
Game<2, 2> b(valuesMe, valuesThemT);
b.coordsMe[0] = coordsMe[me0];
b.coordsMe[1] = coordsMe[me1];
b.coordsThem[0] = coordsThem[them0];
b.coordsThem[1] = coordsThem[them1];
return b;
}
};
struct Strategy {
std::array<NumT, 3> probMe;
std::array<NumT, 3> probThem;
Value expectedValue;
bool valid;
Strategy(void)
: probMe{}
, probThem{}
, expectedValue()
, valid(false)
{}
void findBestMe(const Strategy &b) {
if(b.valid && (!valid || b.expectedValue.me > expectedValue.me)) {
*this = b;
}
}
};
template <int dimMe, int dimThem>
Strategy nash_pure(const Game<dimMe, dimThem> &g) {
Strategy s;
int choiceMe = -1;
int choiceThem = 0;
for(int me = 0; me < dimMe; ++ me) {
for(int them = 0; them < dimThem; ++ them) {
const Value &v = g.at(Index(me, them));
bool valid = true;
for(int me2 = 0; me2 < dimMe; ++ me2) {
if(g.at(Index(me2, them)).me > v.me) {
valid = false;
}
}
for(int them2 = 0; them2 < dimThem; ++ them2) {
if(g.at(Index(me, them2)).them > v.them) {
valid = false;
}
}
if(valid) {
if(choiceMe == -1 || v.me > s.expectedValue.me) {
s.expectedValue = v;
choiceMe = me;
choiceThem = them;
}
}
}
}
if(choiceMe != -1) {
Index iBase = g.baseIndex(Index(choiceMe, choiceThem));
s.probMe[iBase.me] = 1;
s.probThem[iBase.them] = 1;
s.valid = true;
}
return s;
}
Strategy nash_mixed(const Game<2, 2> &g) {
// P Q
// p a A b B
// q c C d D
Value A = g.at(Index(0, 0));
Value B = g.at(Index(0, 1));
Value C = g.at(Index(1, 0));
Value D = g.at(Index(1, 1));
// q = 1-p, Q = 1-P
// Pick p such that choice of P,Q is arbitrary
// p*A+(1-p)*C = p*B+(1-p)*D
// p*A+C-p*C = p*B+D-p*D
// p*(A+D-B-C) = D-C
// p = (D-C) / (A+D-B-C)
NumT p = (D.them - C.them) / (A.them + D.them - B.them - C.them);
// P*a+(1-P)*b = P*c+(1-P)*d
// P*a+b-P*b = P*c+d-P*d
// P*(a+d-b-c) = d-b
// P = (d-b) / (a+d-b-c)
NumT P = (D.me - B.me) / (A.me + D.me - B.me - C.me);
Strategy s;
if(p >= -EPSILON && p <= 1 + EPSILON && P >= -EPSILON && P <= 1 + EPSILON) {
if(p <= 0) {
p = 0;
} else if(p >= 1) {
p = 1;
}
if(P <= 0) {
P = 0;
} else if(P >= 1) {
P = 1;
}
Index iBase0 = g.baseIndex(Index(0, 0));
Index iBase1 = g.baseIndex(Index(1, 1));
s.probMe[iBase0.me] = p;
s.probMe[iBase1.me] = 1 - p;
s.probThem[iBase0.them] = P;
s.probThem[iBase1.them] = 1 - P;
s.expectedValue = Value(
P * A.me + (1 - P) * B.me,
p * A.them + (1 - p) * C.them
);
s.valid = true;
}
return s;
}
Strategy nash_mixed(const Game<3, 3> &g) {
// P Q R
// p a A b B c C
// q d D e E f F
// r g G h H i I
Value A = g.at(Index(0, 0));
Value B = g.at(Index(0, 1));
Value C = g.at(Index(0, 2));
Value D = g.at(Index(1, 0));
Value E = g.at(Index(1, 1));
Value F = g.at(Index(1, 2));
Value G = g.at(Index(2, 0));
Value H = g.at(Index(2, 1));
Value I = g.at(Index(2, 2));
// r = 1-p-q, R = 1-P-Q
// Pick p,q such that choice of P,Q,R is arbitrary
NumT q = ((
+ A.them * (I.them-H.them)
+ G.them * (B.them-C.them)
- B.them*I.them
+ H.them*C.them
) / (
(G.them+E.them-D.them-H.them) * (B.them+I.them-H.them-C.them) -
(H.them+F.them-E.them-I.them) * (A.them+H.them-G.them-B.them)
));
NumT p = (
((G.them+E.them-D.them-H.them) * q + (H.them-G.them)) /
(A.them+H.them-G.them-B.them)
);
NumT Q = ((
+ A.me * (I.me-F.me)
+ C.me * (D.me-G.me)
- D.me*I.me
+ F.me*G.me
) / (
(C.me+E.me-B.me-F.me) * (D.me+I.me-F.me-G.me) -
(F.me+H.me-E.me-I.me) * (A.me+F.me-C.me-D.me)
));
NumT P = (
((C.me+E.me-B.me-F.me) * Q + (F.me-C.me)) /
(A.me+F.me-C.me-D.me)
);
Strategy s;
if(
p >= -EPSILON && q >= -EPSILON && p + q <= 1 + EPSILON &&
P >= -EPSILON && Q >= -EPSILON && P + Q <= 1 + EPSILON
) {
if(p <= 0) { p = 0; }
if(q <= 0) { q = 0; }
if(P <= 0) { P = 0; }
if(Q <= 0) { Q = 0; }
if(p + q >= 1) {
if(p > q) {
p = 1 - q;
} else {
q = 1 - p;
}
}
if(P + Q >= 1) {
if(P > Q) {
P = 1 - Q;
} else {
Q = 1 - P;
}
}
Index iBase0 = g.baseIndex(Index(0, 0));
s.probMe[iBase0.me] = p;
s.probThem[iBase0.them] = P;
Index iBase1 = g.baseIndex(Index(1, 1));
s.probMe[iBase1.me] = q;
s.probThem[iBase1.them] = Q;
Index iBase2 = g.baseIndex(Index(2, 2));
s.probMe[iBase2.me] = 1 - p - q;
s.probThem[iBase2.them] = 1 - P - Q;
s.expectedValue = Value(
A.me * P + B.me * Q + C.me * (1 - P - Q),
A.them * p + D.them * q + G.them * (1 - p - q)
);
s.valid = true;
}
return s;
}
template <int dimMe, int dimThem>
Strategy nash_validate(Strategy &&s, const Game<dimMe, dimThem> &g, Index unused) {
if(!s.valid) {
return s;
}
NumT exp;
exp = 0;
for(int them = 0; them < dimThem; ++ them) {
exp += s.probThem[them] * g.at(Index(unused.me, them)).me;
}
if(exp > s.expectedValue.me) {
s.valid = false;
return s;
}
exp = 0;
for(int me = 0; me < dimMe; ++ me) {
exp += s.probMe[me] * g.at(Index(me, unused.them)).them;
}
if(exp > s.expectedValue.them) {
s.valid = false;
return s;
}
return s;
}
Strategy nash(const Game<2, 2> &g, bool verbose) {
Strategy s = nash_mixed(g);
s.findBestMe(nash_pure(g));
if(!s.valid && verbose) {
std::cerr << "No nash equilibrium found!" << std::endl;
}
return s;
}
Strategy nash(const Game<3, 3> &g, bool verbose) {
Strategy s = nash_mixed(g);
s.findBestMe(nash_validate(nash_mixed(g.subgame22(1, 2, 1, 2)), g, Index(0, 0)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(1, 2, 0, 2)), g, Index(0, 1)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(1, 2, 0, 1)), g, Index(0, 2)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(0, 2, 1, 2)), g, Index(1, 0)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(0, 2, 0, 2)), g, Index(1, 1)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(0, 2, 0, 1)), g, Index(1, 2)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(0, 1, 1, 2)), g, Index(2, 0)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(0, 1, 0, 2)), g, Index(2, 1)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(0, 1, 0, 1)), g, Index(2, 2)));
s.findBestMe(nash_pure(g));
if(!s.valid && verbose) {
// theory says this should never happen, but fp precision makes it possible
std::cerr << "No nash equilibrium found!" << std::endl;
}
return s;
}
struct PlayerState {
int balls;
int ducks;
PlayerState(int balls, int ducks) : balls(balls), ducks(ducks) {}
PlayerState doReload(int maxBalls) const {
return PlayerState(std::min(balls + 1, maxBalls), ducks);
}
PlayerState doThrow(void) const {
return PlayerState(std::max(balls - 1, 0), ducks);
}
PlayerState doDuck(void) const {
return PlayerState(balls, std::max(ducks - 1, 0));
}
std::array<double,3> flail(int maxBalls) const {
// opponent has obvious win;
// try stuff at random and hope the opponent is bad
(void) ducks;
int options = 0;
if(balls > 0) {
++ options;
}
if(balls < maxBalls) {
++ options;
}
if(ducks > 0) {
++ options;
}
std::array<double,3> p{};
if(balls < balls) {
p[0] = 1.0f / options;
}
if(balls > 0) {
p[1] = 1.0f / options;
}
return p;
}
};
class GameStore {
protected:
const int balls;
const int ducks;
const std::size_t playerStates;
const std::size_t gameStates;
public:
static std::string filename(int turn) {
return "nashdata_" + std::to_string(turn) + ".dat";
}
GameStore(int maxBalls, int maxDucks)
: balls(maxBalls)
, ducks(maxDucks)
, playerStates((balls + 1) * (ducks + 1))
, gameStates(playerStates * playerStates)
{}
std::size_t playerIndex(const PlayerState &p) const {
return p.balls * (ducks + 1) + p.ducks;
}
std::size_t gameIndex(const PlayerState &me, const PlayerState &them) const {
return playerIndex(me) * playerStates + playerIndex(them);
}
std::size_t fileIndex(const PlayerState &me, const PlayerState &them) const {
return 2 + gameIndex(me, them) * 2;
}
PlayerState stateFromPlayerIndex(std::size_t i) const {
return PlayerState(i / (ducks + 1), i % (ducks + 1));
}
std::pair<PlayerState, PlayerState> stateFromGameIndex(std::size_t i) const {
return std::make_pair(
stateFromPlayerIndex(i / playerStates),
stateFromPlayerIndex(i % playerStates)
);
}
std::pair<PlayerState, PlayerState> stateFromFileIndex(std::size_t i) const {
return stateFromGameIndex((i - 2) / 2);
}
};
class Generator : public GameStore {
static char toDat(NumT v) {
int iv = int(v * 256.0);
return char(std::max(std::min(iv, 255), 0));
}
std::vector<Value> next;
public:
Generator(int maxBalls, int maxDucks)
: GameStore(maxBalls, maxDucks)
, next()
{}
const Value &nextGame(const PlayerState &me, const PlayerState &them) const {
return next[gameIndex(me, them)];
}
void make_probabilities(
std::array<NumT, 9> &g,
const PlayerState &me,
const PlayerState &them
) const {
const int RELOAD = 0;
const int THROW = 1;
const int DUCK = 2;
g[RELOAD * 3 + RELOAD] =
nextGame(me.doReload(balls), them.doReload(balls)).me;
g[RELOAD * 3 + THROW] =
(them.balls > 0) ? -1
: nextGame(me.doReload(balls), them.doThrow()).me;
g[RELOAD * 3 + DUCK] =
nextGame(me.doReload(balls), them.doDuck()).me;
g[THROW * 3 + RELOAD] =
(me.balls > 0) ? 1
: nextGame(me.doThrow(), them.doReload(balls)).me;
g[THROW * 3 + THROW] =
((me.balls > 0) == (them.balls > 0))
? nextGame(me.doThrow(), them.doThrow()).me
: (me.balls > 0) ? 1 : -1;
g[THROW * 3 + DUCK] =
(me.balls > 0 && them.ducks == 0) ? 1
: nextGame(me.doThrow(), them.doDuck()).me;
g[DUCK * 3 + RELOAD] =
nextGame(me.doDuck(), them.doReload(balls)).me;
g[DUCK * 3 + THROW] =
(them.balls > 0 && me.ducks == 0) ? -1
: nextGame(me.doDuck(), them.doThrow()).me;
g[DUCK * 3 + DUCK] =
nextGame(me.doDuck(), them.doDuck()).me;
}
Game<3, 3> make_game(const PlayerState &me, const PlayerState &them) const {
static std::array<NumT, 9> globalValuesMe;
static std::array<NumT, 9> globalValuesThemT;
#pragma omp threadprivate(globalValuesMe)
#pragma omp threadprivate(globalValuesThemT)
make_probabilities(globalValuesMe, me, them);
make_probabilities(globalValuesThemT, them, me);
Game<3, 3> g(&globalValuesMe, &globalValuesThemT);
for(int i = 0; i < 3; ++ i) {
g.coordsMe[i] = i;
g.coordsThem[i] = i;
}
return g;
}
Strategy solve(const PlayerState &me, const PlayerState &them, bool verbose) const {
if(me.balls > them.balls + them.ducks) { // obvious answer
Strategy s;
s.probMe[1] = 1;
s.probThem = them.flail(balls);
s.expectedValue = Value(1, -1);
return s;
} else if(them.balls > me.balls + me.ducks) { // uh-oh
Strategy s;
s.probThem[1] = 1;
s.probMe = me.flail(balls);
s.expectedValue = Value(-1, 1);
return s;
} else if(me.balls == 0 && them.balls == 0) { // obvious answer
Strategy s;
s.probMe[0] = 1;
s.probThem[0] = 1;
s.expectedValue = nextGame(me.doReload(balls), them.doReload(balls));
return s;
} else {
return nash(make_game(me, them), verbose);
}
}
void generate(int turns, bool saveAll, bool verbose) {
next.clear();
next.resize(gameStates);
std::vector<Value> current(gameStates);
std::vector<char> data(2 + gameStates * 2);
for(std::size_t turn = turns; (turn --) > 0;) {
if(verbose) {
std::cerr << "Generating for turn " << turn << "..." << std::endl;
}
NumT maxDiff = 0;
NumT msd = 0;
data[0] = balls;
data[1] = ducks;
#pragma omp parallel for reduction(+:msd), reduction(max:maxDiff)
for(std::size_t meBalls = 0; meBalls < balls + 1; ++ meBalls) {
for(std::size_t meDucks = 0; meDucks < ducks + 1; ++ meDucks) {
const PlayerState me(meBalls, meDucks);
for(std::size_t themBalls = 0; themBalls < balls + 1; ++ themBalls) {
for(std::size_t themDucks = 0; themDucks < ducks + 1; ++ themDucks) {
const PlayerState them(themBalls, themDucks);
const std::size_t p1 = gameIndex(me, them);
Strategy s = solve(me, them, verbose);
NumT diff;
data[2+p1*2 ] = toDat(s.probMe[0]);
data[2+p1*2+1] = toDat(s.probMe[0] + s.probMe[1]);
current[p1] = s.expectedValue;
diff = current[p1].me - next[p1].me;
msd += diff * diff;
maxDiff = std::max(maxDiff, std::abs(diff));
}
}
}
}
if(saveAll) {
std::ofstream fs(filename(turn).c_str(), std::ios_base::binary);
fs.write(&data[0], data.size());
fs.close();
}
if(verbose) {
std::cerr
<< "Expectations changed by at most " << maxDiff
<< " (RMSD: " << std::sqrt(msd / gameStates) << ")" << std::endl;
}
if(maxDiff < 0.0001f) {
if(verbose) {
std::cerr << "Expectations have converged. Stopping." << std::endl;
}
break;
}
std::swap(next, current);
}
// Always save turn 0 with the final converged expectations
std::ofstream fs(filename(0).c_str(), std::ios_base::binary);
fs.write(&data[0], data.size());
fs.close();
}
};
void open_file(std::ifstream &target, int turn, int maxDucks, int maxBalls) {
target.open(GameStore::filename(turn).c_str(), std::ios::binary);
if(target.is_open()) {
return;
}
target.open(GameStore::filename(0).c_str(), std::ios::binary);
if(target.is_open()) {
return;
}
Generator(maxBalls, maxDucks).generate(200, false, false);
target.open(GameStore::filename(0).c_str(), std::ios::binary);
}
int choose(int turn, const PlayerState &me, const PlayerState &them, int maxBalls) {
std::ifstream fs;
open_file(fs, turn, std::max(me.ducks, them.ducks), maxBalls);
unsigned char balls = fs.get();
unsigned char ducks = fs.get();
fs.seekg(GameStore(balls, ducks).fileIndex(me, them));
unsigned char p0 = fs.get();
unsigned char p1 = fs.get();
fs.close();
// only 1 random number per execution; no need to seed a PRNG
std::random_device rand;
int v = std::uniform_int_distribution<int>(0, 254)(rand);
if(v < p0) {
return 0;
} else if(v < p1) {
return 1;
} else {
return 2;
}
}
int main(int argc, const char *const *argv) {
if(argc == 4) { // maxTurns, maxBalls, maxDucks
Generator(atoi(argv[2]), atoi(argv[3])).generate(atoi(argv[1]), true, true);
return 0;
}
if(argc == 7) { // turn, meBalls, themBalls, meDucks, themDucks, maxBalls
std::cout << choose(
atoi(argv[1]),
PlayerState(atoi(argv[2]), atoi(argv[4])),
PlayerState(atoi(argv[3]), atoi(argv[5])),
atoi(argv[6])
) << std::endl;
return 0;
}
return 1;
}
C ++ 11 이상으로 컴파일하십시오. 성능을 위해 OpenMP 지원으로 컴파일하는 것이 좋습니다 (그러나 이것은 단지 속도를위한 것이므로 필수는 아닙니다)
g++ -std=c++11 -fopenmp pain_in_the_nash.cpp -o pain_in_the_nash
이것은 매 차례마다해야 할 일을 결정하기 위해 내쉬 평형을 사용합니다. 이는 이론적으로 상대방이 어떤 전략을 사용하든 장기적으로 (많은 게임에서) 승리하거나 추첨 한다는 것을 의미 합니다. 실제로 그러한 경우는 구현에서 실수를했는지 여부에 달려 있습니다. 그러나이 KoTH 경쟁은 각 상대에 대해 단일 라운드 만 있기 때문에 리더 보드에서는 그다지 좋지 않을 것입니다.
내 원래 아이디어는 각 게임 상태 (예 : 각 공의 가치 + b, 각 오리의 가치 + d)에 대해 간단한 평가 기능을 사용하는 것이었지만, 이러한 평가가 무엇인지 알아내는 데 명백한 문제가 생겨 불가능합니다. 점점 더 많은 공을 모으는 것의 수익 감소에 대해 행동하십시오. 대신, 이것은 전체 게임 트리를 분석하고 1000 턴에서 거꾸로 작동하며 각 게임이 어떻게 펼쳐질 수 있는지에 따라 실제 평가를 채 웁니다.
결과적으로, 몇 가지 하드 코딩 된 "명백한"행동을 제외하고는이 전략이 어떤 전략을 사용하는지 전혀 알지 못합니다. 눈덩이). 누구나 데이터 세트를 분석하고 싶다면 생성해야 할 흥미로운 행동이 있다고 생각합니다!
"Save One"에 대해 테스트하면 장기적으로 실제로 승리하지만 작은 마진 (514 승, 486 패, 1000 게임의 첫 번째 배치에서 0 무승부, 509 승, 491 패, 0 두 번째에 그립니다).
중대한!
이것은 기본적으로 작동하지만 좋은 생각은 아닙니다. 전체 게임 트리를 생성하려면 적당히 개발자 사양의 노트북에서 약 9 분이 걸립니다. 그러나 최종 확률은 일단 생성되면 파일에 저장되며 그 후에는 각 숫자가 임의의 숫자를 생성하고 2 바이트와 비교하기 때문에 매우 빠릅니다.
바로 가기 위해서는 이 파일 (3.5MB)을 다운로드 하여 실행 파일이있는 디렉토리에 넣으십시오.
또는 다음을 실행하여 직접 생성 할 수 있습니다.
./pain_in_the_nash 1000 50 25
수렴 할 때까지 한 턴에 하나의 파일을 저장합니다. 각 파일은 3.5MB이며 720 번에 수렴 될 것입니다 (예 : 280 개 파일, ~ 1GB). 대부분의 게임은 720 번 근처에 오지 않으므로 사전 수렴 파일의 중요성은 매우 낮습니다.