(-a) × (-a) = a × a


121

우리는 모두 (에이)×(에이)=에이×에이 (희망적으로)임을 알고 있지만 증명할 수 있습니까?

당신의 임무는 링 공리를 사용 하여이 사실을 증명하는 것입니다. 링 공리는 무엇입니까? 링 공리는 세트에 대한 두 개의 이진 연산이 따라야하는 규칙 목록입니다. 두 연산은 더하기 + 와 곱셈 × 입니다. 이 도전 여기 링 공리이다 +× 일부 세트에 이진 연산을 폐쇄 에스 , 에 닫힌 단항 연산이고 에스 와 , B , C를 구성원 인 S :에이에스

  1. 에이+(+)=(에이+)+

  2. 에이+0=에이

  3. 에이+(에이)=0

  4. 에이+=+에이 *

  5. 에이×(×)=(에이×)×

  6. 에이×1=에이

  7. 1×에이=에이

  8. 에이×(+)=(에이×)+(에이×)

  9. (+)×에이=(×에이)+(×에이)

당신의 증거는 각각 하나의 공리를 적용하는 일련의 평등이어야합니다.

공리를 전체 표현 또는 일부 하위 표현에 적용 할 수 있습니다. 예를 들어(에이+)+(+) 가있는 경우 Axiom 4를(+) 항,(에이+) 항 또는 전체 식 전체에 적용 할 수 있습니다. 변수는 우리가 공리 (4)를 적용 할 수 있습니다 예를 들어 임의의 복잡한 표현식에 설 수((에이×)+)+((에이)+1) 에 도착((에이)+1)+((에이×)+) . 증명의 각 단계에서하나의표현에하나의공리만 적용 할 수 있습니다. 모든 공리는 양방향이므로 대체는 어느 방향 으로든 갈 수 있습니다. 다음과 같은 것은 허용되지 않습니다

(a + b) + (c + d) = (a + (b + c)) + d Ax. 1

두 단계로 수행해야합니다.

(a + b) + (c + d) = ((a + b) + c) + d Ax. 1
                  = (a + (b + c)) + d Ax. 1

일반적으로 당연한 것으로 생각할 수 있지만 공리 목록에 나열되지 않은 사실은 가정 할 수 없습니다. 예를 들어 (에이)=(1)×에이 는 참이지만 사전 단계를 수행하려면 여러 단계가 필요합니다.

사용자 Anthony 는 TIO를 대체 할 수 있는 온라인 증명 검사기 를 친절하게 제공 했습니다 .

증거 예

다음은 사용 된 공리가 각 단계의 오른쪽에 표시되어있는 라는(에이)=에이 증거의 예 입니다.

 -(-a) = (-(-a)) + 0          Ax. 2
       = 0 + (-(-a))          Ax. 4
       = (a + (-a)) + (-(-a)) Ax. 3
       = a + ((-a) + (-(-a))) Ax. 1
       = a + 0                Ax. 3
       = a                    Ax. 2

온라인으로 사용해보십시오!

위에 표시된 것과 같은 연속 치환을 사용하여 (에이)×(에이)=에이×에이 를 증명해야합니다 .

채점

이다 답이에서 얻을 수의 스텝 수 득점 할 수 있도록 (에이)×(에이)× 낮은 점수가 더 잘되는과.에이×에이

렘마

일부 답변은 Lemma를 증거로 사용하기로 선택했기 때문에 혼란을 피하기 위해 점수를 매기는 방법을 설명하겠습니다. 시작하지 않은 경우, 보조 정리는 나중에 증거에서 사용하는 사실의 증거입니다. 실제 수학에서는 생각을 정리하거나 독자에게 정보를 명확하게 전달하는 데 도움이 될 수 있습니다. 이 챌린지에서 보조 정리를 사용하면 점수에 직접적인 영향을 미치지 않아야합니다. (증거 조직이 골프를 더 쉽게 또는 더 어렵게 만들 수 있지만)

당신이 보조 정리를 사용하기로 선택하면 그것을 사용할 때마다 처음으로 정리 정리를 증명하는 데 필요한 단계가 많이 소요됩니다. 예를 들어 다음은 보조 정리를 사용한 증명의 점수 분석입니다.

Lemma:
a × 0 = 0

Proof (7 steps):
a × 0 = (a × 0) + 0                        Ax. 2 (1)
      = (a × 0) + ((a × b) + (-(a × b)))   Ax. 3 (1)
      = ((a × 0) + (a × b)) + (-(a × b))   Ax. 1 (1)
      = (a × (0 + b)) + (-(a × b))         Ax. 8 (1)
      = (a × (b + 0)) + (-(a × b))         Ax. 4 (1)
      = (a × b) + (-(a × b))               Ax. 2 (1)
      = 0                                  Ax. 3 (1)

Theorem:
(a × 0) + (b × 0) = 0

Proof (15 steps):
(a × 0) + (b × 0) = 0 + (b × 0)  Lemma (7)
                  = (b × 0) + 0  Ax. 4 (1)
                  = b × 0        Ax. 2 (1)
                  = 0            Lemma (7)

* :이 공리가이 속성을 증명하는 데 반드시 필요한 것은 아니지만, 여전히 사용할 수 있습니다.

† : 1 이 원하는 평등으로 나타나지 않기 때문에 이러한 공리를 사용하는 증거는 최소가 아닙니다. 그것은 이러한 공리가 원하는 사실을 증명하는 데 도움이 될 수 없다는 것입니다. 그것들은 완전성을 위해 포함되었습니다.


8
우리가 작성한 프로그램이 이것을 해결하거나 답을 인쇄해야합니까?
Tahg

8
@Tahg 당신은 그것을 증명하고 답변으로 증거를 제출해야합니다. 이것은 여기서 볼 수있는 대부분의 문제와는 다릅니다.
HyperNeutrino

8
a * 0 = 0이 공리 목록에 없다는 것을 깨닫기 전에 좌절감을 느꼈습니다.
Sparr

8
음 ... 내가 틀렸을지도 모르지만이 방법은 주제가 아닌가? 답변에 코드가 포함되어서는 안됩니까?
완전 인간

34
@icrieverytim 도움이된다면 axiom 목록을 9 개의 내장 매개 변수 대체 함수가있는 프로그래밍 언어로 생각하면 특정 입력을 특정 출력으로 변환하는 함수를위한 코드 골프입니다.
Sparr

답변:


47

18 단계

(-a)*(-a) = ((-a)*(-a))+0                                             Axiom 2
          = ((-a)*(-a))+(((a*a)+(a*(-a)))+(-((a*a)+(a*(-a)))))        Axiom 3
          = (((-a)*(-a))+((a*a)+(a*(-a))))+(-((a*a)+(a*(-a))))        Axiom 1
          = (((a*a)+(a*(-a)))+((-a)*(-a)))+(-((a*a)+(a*(-a))))        Axiom 4
          = ((a*a)+((a*(-a))+((-a)*(-a))))+(-((a*a)+(a*(-a))))        Axiom 1
          = ((a*a)+((a+(-a))*(-a)))+(-((a*a)+(a*(-a))))               Axiom 9
          = ((a*a)+(0*(-a)))+(-((a*a)+(a*(-a))))                      Axiom 3
          = ((a*(a+0))+(0*(-a)))+(-((a*a)+(a*(-a))))                  Axiom 2
          = ((a*(a+(a+(-a))))+(0*(-a)))+(-((a*a)+(a*(-a))))           Axiom 3
          = (((a*a)+(a*(a+(-a))))+(0*(-a)))+(-((a*a)+(a*(-a))))       Axiom 8
          = ((a*a)+((a*(a+(-a)))+(0*(-a))))+(-((a*a)+(a*(-a))))       Axiom 1
          = (a*a)+(((a*(a+(-a)))+(0*(-a)))+(-((a*a)+(a*(-a)))))       Axiom 1
          = (a*a)+((((a*a)+(a*(-a)))+(0*(-a)))+(-((a*a)+(a*(-a)))))   Axiom 8
          = (a*a)+(((a*a)+((a*(-a))+(0*(-a))))+(-((a*a)+(a*(-a)))))   Axiom 1
          = (a*a)+(((a*a)+((a+0)*(-a)))+(-((a*a)+(a*(-a)))))          Axiom 9
          = (a*a)+(((a*a)+(a*(-a)))+(-((a*a)+(a*(-a)))))              Axiom 2
          = (a*a)+0                                                   Axiom 3
          = a*a                                                       Axiom 2

솔루션을 확인하는 프로그램을 작성했습니다. 따라서이 오류를 발견하면 내 프로그램도 잘못되었습니다.


@Etoplay 호기심으로 프롤로그로 프로그램을 작성 했습니까?
Jalil Compaoré

23
프로그램을 포함시킬 수 있다면 좋을 것입니다. 다른 솔루션을 확인하는 데 도움이 될 수 있습니다.
Sriotchilism O'Zaic

2
한 번의 공리를 한 번만 적용하여 첫 번째 줄에서 두 번째 줄로 어떻게 가셨습니까?
슈 투피

4
@SztupY 공리 3입니다 v + (-v) = 0하자 v = ((a*a)+(a*(-a))당신은 1 단계에서 거기에 도착.
MT0


29

18 단계

이미 게시 된 18 단계 솔루션과 다릅니다.

a*a = a*a + 0                                                 A2
    = a*a + ((a*(-a) + a*(-a)) + (-(a*(-a) + a*(-a))))        A3
    = (a*a + (a*(-a) + a*(-a))) + (-(a*(-a) + a*(-a)))        A1
    = (a*a + a*((-a) + (-a))) + (-(a*(-a) + a*(-a)))          A8
    = a*(a + ((-a) + (-a))) + (-(a*(-a) + a*(-a)))            A8
    = a*((a + (-a)) + (-a)) + (-(a*(-a) + a*(-a)))            A1
    = a*(0 + (-a)) + (-(a*(-a) + a*(-a)))                     A3
    = a*((-a) + 0) + (-(a*(-a) + a*(-a)))                     A4
    = a*(-a) + (-(a*(-a) + a*(-a)))                           A2
    = (a + 0)*(-a) + (-(a*(-a) + a*(-a)))                     A2
    = (a + (a + (-a)))*(-a) + (-(a*(-a) + a*(-a)))            A3
    = ((a + a) + (-a))*(-a) + (-(a*(-a) + a*(-a)))            A1
    = ((-a) + (a + a))*(-a) + (-(a*(-a) + a*(-a)))            A4
    = ((-a)*(-a) + (a + a)*(-a)) + (-(a*(-a) + a*(-a)))       A9
    = ((-a)*(-a) + (a*(-a) + a*(-a))) + (-(a*(-a) + a*(-a)))  A9
    = (-a)*(-a) + ((a*(-a) + a*(-a)) + (-(a*(-a) + a*(-a))))  A1
    = (-a)*(-a) + 0                                           A3
    = (-a)*(-a)                                               A2

누군가가 그것을 뒤로하는 것을 보는 것에 흥미가있다. 모든 단계는 되돌릴 수 있으므로 훌륭한 증거입니다.
Sriotchilism O'Zaic

거꾸로되는 것은 대부분 우연입니다. 증거는 실제로 상당히 대칭 적입니다. 나는 두 개의 유사한 단계 시퀀스를 사용하여 어느 한 쪽 끝에서 중간 항으로 a*(-a) + stuff갑니다.
Emil Jeřábek


28

29 26 단계

아무 정리도 없습니다!

잘못된 것이 있으면 의견을 말하십시오. (실수하기 매우 쉽습니다)

(-a) × (-a) = ((-a) + 0) × (-a)                                                  Ax. 2
            = ((-a) + (a + (-a))) × (-a)                                         Ax. 3
            = ((a + (-a)) + (-a)) × (-a)                                         Ax. 4
            = (a + ((-a) + (-a))) × (-a)                                         Ax. 1
            = (a × (-a)) + (((-a) + (-a)) × (-a))                                Ax. 9
            = (a × ((-a) + 0)) + (((-a) + (-a)) × (-a))                          Ax. 2
            = (a × ((-a) + (a + (-a)))) + (((-a) + (-a)) × (-a))                 Ax. 3
            = (a × ((a + (-a)) + (-a))) + (((-a) + (-a)) × (-a))                 Ax. 4
            = (a × (a + ((-a) + (-a)))) + (((-a) + (-a)) × (-a))                 Ax. 1
            = ((a × a) + (a × ((-a) + (-a)))) + (((-a) + (-a)) × (-a))           Ax. 8
            = (a × a) + ((a × ((-a) + (-a))) + (((-a) + (-a)) × (-a)))           Ax. 1
            = (a × a) + (((a × (-a)) + (a × (-a))) + (((-a) + (-a)) × (-a)))     Ax. 8
            = (a × a) + (((a + a) × (-a)) + (((-a) + (-a)) × (-a)))              Ax. 9
            = (a × a) + (((a + a) + ((-a) + (-a))) × (-a))                       Ax. 9
            = (a × a) + ((((a + a) + (-a)) + (-a)) × (-a))                       Ax. 1
            = (a × a) + (((a + (a + (-a))) + (-a)) × (-a))                       Ax. 1
            = (a × a) + (((a + 0) + (-a)) × (-a))                                Ax. 3
            = (a × a) + ((a + (-a)) × (-a))                                      Ax. 2
            = (a × a) + (0 × (-a))                                               Ax. 3
            = (a × a) + ((0 × (-a)) + 0)                                         Ax. 2
            = (a × a) + ((0 × (-a)) + ((0 × (-a)) + (-(0 × (-a)))))              Ax. 3
            = (a × a) + (((0 × (-a)) + (0 × (-a))) + (-(0 × (-a))))              Ax. 1
            = (a × a) + (((0 + 0) × (-a)) + (-(0 × (-a))))                       Ax. 9
            = (a × a) + ((0 × (-a)) + (-(0 × (-a))))                             Ax. 2
            = (a × a) + 0                                                        Ax. 3
            = (a × a)                                                            Ax. 2

크레딧은 Maltysen 에게 0 × (-a) = 0



14

18 단계

최초의 18 단계 증거는 아니지만 다른 단계보다 간단합니다.

(-a)*(-a)
= (-a)*(-a) + 0                             [Axiom 2]
= (-a)*(-a) + ((-a)*a + -((-a)*a))          [Axiom 3]
= ((-a)*(-a) + (-a)*a) + -((-a)*a)          [Axiom 1]
= ((-a)*(-a) + ((-a) + 0)*a) + -((-a)*a)    [Axiom 2]
= ((-a)*(-a) + ((-a)*a + 0*a)) + -((-a)*a)  [Axiom 9]
= (((-a)*(-a) + (-a)*a) + 0*a) + -((-a)*a)  [Axiom 1]
= ((-a)*((-a) + a) + 0*a) + -((-a)*a)       [Axiom 8]
= ((-a)*(a + (-a)) + 0*a) + -((-a)*a)       [Axiom 4]
= ((-a)*0 + 0*a) + -((-a)*a)                [Axiom 3]
= (0*a + (-a)*0) + -((-a)*a)                [Axiom 4]
= ((a + (-a))*a + (-a)*0) + -((-a)*a)       [Axiom 3]
= ((a*a + (-a)*a) + (-a)*0) + -((-a)*a)     [Axiom 9]
= (a*a + ((-a)*a + (-a)*0)) + -((-a)*a)     [Axiom 1]
= (a*a + (-a)*(a + 0)) + -((-a)*a)          [Axiom 8]
= (a*a + (-a)*a) + -((-a)*a)                [Axiom 2]
= a*a + ((-a)*a + -((-a)*a))                [Axiom 1]
= a*a + 0                                   [Axiom 3]
= a*a                                       [Axiom 2]

확인


9
A2: (-a) x (-a) = ((-a) + 0) x (-a)
A3:             = ((-a) + (a + (-a))) x (-a)
A9:             = ((-a) x (-a)) + ((a + (-a)) x (-a))
A4:             = ((-a) x (-a)) + (((-a) + a) x (-a))
A9:             = ((-a) x (-a)) + (((-a) x (-a)) + (a x (-a)))
A1:             = (((-a) x (-a)) + ((-a) x (-a))) + (a x (-a))
A2:             = (((-a) x (-a)) + ((-a) x (-a))) + (a x ((-a) + 0))
A3:             = (((-a) x (-a)) + ((-a) x (-a))) + (a x ((-a) + (a + (-a))))
A8:             = (((-a) x (-a)) + ((-a) x (-a))) + ((a x (-a)) + (a x (a + (-a))))
A8:             = (((-a) x (-a)) + ((-a) x (-a))) + ((a x (-a)) + ((a x a) + (a x (-a))))
A4:             = (((-a) x (-a)) + ((-a) x (-a))) + ((a x (-a)) + ((a x (-a)) + (a x a)))
A1:             = (((-a) x (-a)) + ((-a) x (-a))) + (((a x (-a)) + (a x (-a))) + (a x a))
A8:             = ((-a) x ((-a) + (-a))) + (((a x (-a)) + (a x (-a))) + (a x a))
A8:             = ((-a) x ((-a) + (-a))) + ((a x ((-a) + (-a))) + (a x a))
A1:             = (((-a) x ((-a) + (-a))) + (a x ((-a) + (-a)))) + (a x a)
A9:             = (((-a) + a) x ((-a) + (-a))) + (a x a)
A4:             = ((a + (-a)) x ((-a) + (-a))) + (a x a)
Lemma:          = (0 x ((-a) + (-a))) + (a x a)
A3:             = 0 + (a x a)
A4:             = (a x a) + 0
A2:             = (a x a)

Lemma: 0 = 0 x a

A3: 0 = (0 x a) + (-(0 x a))
A2:   = ((0 + 0) x a) + (-(0 x a))
A9:   = ((0 x a) + (0 x a)) + (-(0 x a))
A1:   = (0 x a) + ((0 x a) + (-(0 x a)))
A3:   = (0 x a) + 0
A2:   = (0 x a)

27 26 단계 중복 라인을 확인한 Funky Computer Man 에게 감사합니다.


1
사이트에 오신 것을 환영합니다! 왜 한 번만 사용하기 위해 정리를 만들지 잘 모르겠지만 규칙에 위배되지 않는다고 가정합니다.
Sriotchilism O'Zaic

@FunkyComputerMan 감사합니다! 네가 옳아; 나는 그 정리를 쓸 때 내가 무슨 생각을했는지 잘 모르겠습니다 ^^. 편집 해 주셔서 감사합니다.
Jalil Compaoré

1
@ JalilCompaoré 나는 첫 번째가 아닌 두 번째 (-a)A3 에 적용 A2하여 마지막 으로 저장 할 수 있다고 생각합니다 . 나는 지금 그것을 통해 일할 시간이 없기 때문에 확실하지 않습니다.
H.PWiz

7

6 + 7 + 7 + 6 + 3 = 29 단계

난 정말 아무것도 망치지 않았 으면 좋겠다고 생각하면 의견을 남겨주세요.

Lemma 1. a*0=0 (6 steps)

0 = a*0 + -(a*0)  axiom 3
= a*(0+0) + -(a*0) axiom 2
= (a*0 + a*0) + -(a*0) axiom 8
= a*0 + (a*0 + -(a*0)) axiom 1
= a*0 + 0 axiom 3
= a*0 axiom 2

Lemma 2. a*(-b) = -(a*b) (7 steps)

a*(-b) = a*(-b) + 0 axiom 2
= a*(-b) + (a*b + -(a*b)) axiom 3
= (a*(-b) + a*b) + -(a*b) axiom 1
= a*(-b+b) + -(a*b) axiom 8
= a*0 + -(a*b) axiom 3
= 0 + -(a*b) lemma 1
= -(a*b) axiom 2

Lemma 3. (-a)*b = -(a*b) (7 steps)
    same as above

Lemma 4. -(-(a)) = a (6 steps)

 -(-a) = (-(-a)) + 0    axiom 2
 = 0 + (-(-a))          axiom 4
 = (a + (-a)) + (-(-a)) axiom 3
 = a + ((-a) + (-(-a))) axiom 1
 = a + 0                axiom 3
 = a                    axiom 2

Theorem. -a*-a=0 (3 steps)

-a*-a = -(a*(-a)) lemma 3
= -(-(a*a)) lemma 2
= a*a lemma 4

Q.E.D.

3
난 당신이
부도덕을

11
"정리. -a * -a = 0"은 = a * a?
Sparr

2
@ H.PWiz 나는 보조 정리를 사용하는 사람들에게는 문제가 없지만 사용 할 때마다 많은 시간을 소비합니다. 최적화 방법을 얻을 수 있기 때문에 사용하지 않는 것이 좋습니다. 그러나이 게시물에 관한 한 괜찮습니다.
Sriotchilism O'Zaic

4
공리 2의 단일 적용에서 "0 +-(a * b)"에서 "-(a * b)"로가는 것은 옳지 않습니다. axiom 4를 사용하여 +의 측면을 먼저 바꿉니다.
Sparr

2
내가 읽는 방식은 lemma 2/3는 6 단계 + 12 단계에 대한 lemma 1의 인스턴스이며, lemma 4는 6 단계이며 총 30 단계입니다. 여기에 뭔가 빠졌습니까?
Tahg

6

23 단계

(-a) * (-a) = ((-a) * (-a)) + 0                                 ✔ axiom 2
            = ((-a) * (-a)) + (((-a) * a) + -((-a) * a))        ✔ axiom 3
            = (((-a) * (-a)) + (-a) * a) + -((-a) * a)          ✔ axiom 1
            = (-a) * (-a + a) + -((-a) * a)                     ✔ axiom 8
            = (-a) * (a + (-a)) + -((-a) * a)                   ✔ axiom 4
            = ((-a) * 0) + -((-a) * a)                          ✔ axiom 3
            = (((-a) * 0) + 0) + -((-a) * a)                    ✔ axiom 2
            = ((-a) * 0 + ((-a)*0 + -((-a)*0))) + -((-a) * a)   ✔ axiom 3
            = (((-a) * 0 + (-a)*0) + -((-a)*0)) + -((-a) * a)   ✔ axiom 1
            = ((-a) * (0 + 0) + -((-a)*0)) + -((-a) * a)        ✔ axiom 8
            = ((-a) * 0 + -((-a)*0)) + -((-a) * a)              ✔ axiom 2
            = 0 + -((-a) * a)                                   ✔ axiom 3
            = (0* a) + -(0*a) + -((-a) * a)                     ✔ axiom 3
            = ((0+0)* a) + -(0*a) + -((-a) * a)                 ✔ axiom 2
            = ((0 * a ) + (0*a) + -(0*a)) + -((-a) * a)         ✔ axiom 9
            = ((0 * a ) + ((0*a) + -(0*a))) + -((-a) * a)       ✔ axiom 1
            = ((0 * a ) + 0) + -((-a) * a)                      ✔ axiom 3
            = (0 * a ) + -((-a) * a)                            ✔ axiom 2
            = ((a + -a) * a ) + -((-a) * a)                     ✔ axiom 3
            = ((a * a) + (-a) * a) + -((-a) * a)                ✔ axiom 9
            = (a * a) + (((-a) * a) + -((-a) * a))              ✔ axiom 1
            = (a * a) + 0                                       ✔ axiom 3
            = a * a                                             ✔ axiom 2

온라인으로 사용해보십시오!

예, 당신은 그 권리를 읽었습니다. 나는이 퍼즐에 대한 증명 검사기를 작성했습니다 (자연스럽게 검사기 자체가 잘못되었을 가능성이 있습니다)


5

34 단계

Lemma 1: 0=0*a (8 steps)
    0
A3: a*0 + -(a*0)
A4: -(a*0) + a*0
A2: -(a*0) + a*(0+0)
A8: -(a*0) + (a*0 + a*0)
A1: (-(a*0) + a*0) + a*0
A3: 0 + a*0
A4: a*0 + 0
A2: a*0

Theorem: -a*-a = a*a (49 steps)

    -a * -a
A2: (-a+0) * -a
A2: (-a+0) * (-a+0)
A3: (-a+(a+-a)) * (-a+0)
A3: (-a+(a+-a)) * (-a+(a+-a))
A8: -a*(-a+(a+-a)) + (a+-a)*(-a+(a+-a))
A8: -a*(-a+(a+-a)) + -a*(-a+(a+-a)) + a*(-a+(a+-a))
A3: -a*(-a+0)      + -a*(-a+(a+-a)) + a*(-a+(a+-a))
A3: -a*(-a+0)      + -a*(-a+0)      + a*(-a+(a+-a))
A8: -a*(-a+0)      + -a*(-a+0)      + a*-a + a*(a+-a)
A8: -a*(-a+0)      + -a*(-a+0)      + a*-a + a*a + a*-a
A2: -a*-a          + -a*(-a+0)      + a*-a + a*a + a*-a
A2: -a*-a          + -a*-a          + a*-a + a*a + a*-a
A8: -a*-a          + (-a+a)*-a             + a*a + a*-a
A3: -a*-a          + 0*-a                  + a*a + a*-a
L1: -a*-a          + 0                     + a*a + a*-a
A2: -a*-a                                  + a*a + a*-a
A4: a*a + -a*-a + a*-a
A8: a*a + (-a+a)*-a
A3: a*a + 0*-a
L1: a*a + 0
A2: a*a

1
나는 잠시 후 Parens가 부족하다는 것을 알았습니다. 협회 비용 단계이기 때문에, 당신이 파 렌스를 포함하면 증명을 쉽게 확인하게 할 것이라고 생각합니다.
Sriotchilism O'Zaic

여전히 개선하고 업데이트 중입니다. 내가 끝나면 모든 양털을 포함하려고합니다.
Sparr

5

25 단계

참고 : 질문에 따라 논리 규칙 (균등 포함)이 암시되고 총 단계 수에 포함되지 않는다고 가정합니다. 즉, "x = y이면 y = x"및 "if ((P AND Q) AND R) 그렇다면 (P AND (Q AND R))"와 같은 것을 암시 적으로 사용할 수 있습니다.

레마 Z [6 단계] : 0*a = 0:

0 = (0*a) + (-(0*a))       | Ax. 3
  = ((0+0)*a) + (-(0*a))   | Ax. 2
  = (0*a + 0*a) + (-(0*a)) | Ax. 9
  = 0*a + (0*a + (-(0*a))) | Ax. 1
  = 0*a + (0)              | Ax. 3
  = 0*a                    | Ax. 2

렘마 M [12 단계] :(-a)*b = -(a*b)

(-a)*b = (-a)*b + 0                | Ax. 2
       = (-a)*b + (a*b + (-(a*b))) | Ax. 3
       = ((-a)*b + a*b) + (-(a*b)) | Ax. 5
       = ((-a)+a)*b + (-(a*b))     | Ax. 9
       = 0*b + (-(a*b))            | Ax. 3
       = 0 + (-(a*b))              | Lem. Z [6]
       = -(a*b)                    | Ax. 2

정리 [25 단계] :(-a)*(-a) = a*a

(-a)*(-a) = (-a)*(-a) + 0                | Ax. 2
          = 0 + (-a)*(-a)                | Ax. 4
          = (a*a + (-(a*a))) + (-a)*(-a) | Ax. 3
          = a*a + ((-(a*a)) + (-a)*(-a)) | Ax. 1
          = a*a + ((-a)*a + (-a)*(-a))   | Lem. M [12]
          = a*a + ((-a)*(a + (-a)))      | Ax. 8
          = a*a + ((-a)*0)               | Ax. 3
          = a*a + 0                      | Lem. Z [6]
          = a*a                          | Ax. 2

여기에 개선의 여지가있는 것 같습니다. 예를 들어, 나는 덧셈의 계산적 속성을 사용합니다 (-a)*(-a) = a*a. 덧셈이 비정규적인 대수 구조에서는 사실 이므로 불필요하다고 생각 됩니다. 다른 한편으로, 이러한 구조들에서, 부가적인 정체성은 교환 적이며, 그것이 증명에 필요한 전부입니다. 난 몰라 보다 일반적으로 증명의 구조는 방향성이없는 것 같습니다. 문제가 발생하기 전까지는 문제를 던졌습니다. 최적화가 필요하다고 생각합니다.

재미 있고 창의적인 질문 OP에 감사했습니다! 나는 이와 같은 도전을 본 적이 없다. 희망적으로 는 일이된다!


Lemma Z에 사용 된 접근 방식이 어떻게 0=(-a)*06 단계로 동등한 증거를 만들 수 있는지 봅니다 . 기술적으로 그것은 자체 Lemma를받을 가치가 있습니까?
SmileAndNod

4

22 23 단계

이전의 결함이있는 새로운 답변. 일반적인 의견을 먼저 추가하겠습니다.

  • 문제는 방정식의 양변에 항을 추가 할 수 없습니다. 오히려 초기 문자열 만 수정할 수 있습니다.
  • 곱셈은 ​​정식으로 가정되지 않습니다.
  • 우리에게는 단위 1 이 주어 지지만, 그것을 정의하는 규칙에만 독점적으로 참여하기 때문에 퍼즐에서 어떤 역할도 수행하지 않습니다.

이제 증명 을 위해 (읽기를 단순화하기 위해 n = (-a) 를 정의합니다 .)

(-a)×(-a) :=
n×n =
n×n + 0 =                                [Ax. 2]
n×n + [n×a + -(n×a)] =                   [Ax. 3]
[n×n + n×a] + -(n×a) =                   [Ax. 1]
[n×(n+a)] + -(n×a) =                     [Ax. 8]
[n×(n+a) + 0] + -(n×a) =                 [Ax. 2]
[n×(n+a) + (n×a + -(n×a))] + -(n×a) =    [Ax. 3]
[(n×(n+a) + n×a) + -(n×a)] + -(n×a) =    [Ax. 1]
[n×((n+a) + a) + -(n×a)] + -(n×a) =      [Ax. 8]
[n×((a+n) + a) + -(n×a)] + -(n×a) =      [Ax. 4]
[n×(0 + a) + -(n×a)] + -(n×a) =          [Ax. 3]
[n×(a + 0) + -(n×a)] + -(n×a) =          [Ax. 4]
[n×a + -(n×a)] + -(n×a) =                [Ax. 2]
[(n+0)×a + -(n×a)] + -(n×a) =            [Ax. 2]
[(0+n)×a + -(n×a)] + -(n×a) =            [Ax. 4]
[((a+n)+n)×a + -(n×a)] + -(n×a) =        [Ax. 3]
[((a+n)×a+n×a) + -(n×a)] + -(n×a) =      [Ax. 9]
[(a+n)×a+(n×a + -(n×a))] + -(n×a) =      [Ax. 1]
[(a+n)×a + 0] + -(n×a) =                 [Ax. 3]
[(a+n)×a] + -(n×a) =                     [Ax. 2]
[a×a+n×a] + -(n×a) =                     [Ax. 9]
a×a+[n×a + -(n×a)] =                     [Ax. 1]
a×a+0 =                                  [Ax. 3]
a×a                                      [Ax. 2]

@ H.PWiz 왜 당신은 갈 수 없습니다 n0 + n한 번에? A2 아닌가요? 규칙은 말한다 변수는 또한 임의의 복잡한 표현을 위해 서있다
jq170727

@ jq170727 Axiom 2는 a + 0 = a그렇지 않다고 말합니다 0 + a = a. 에 가려면 정류 단계가 하나 더 필요 n합니다 0 + n.
Sriotchilism O'Zaic

@ H.PWiz 공리를 반대로 읽을 수 없습니까?
jq170727

1
@ jq170727 아니, 당신은 그것을 위해 commutativity를 사용해야합니다.
Jalil Compaoré

4

304 단계

이 증명은 Mathematica의 FindEquationalProof 함수에 의해 생성되므로 커뮤니티 위키 .

증거는 다소 길다. Mathematica는 골프를 치는 방법을 모른다.

이 경우, 증명 생성 티카 코드 (11.3 티카 필요)는 p, t, n수단 +,는 ×, -각각 :

ringAxioms = {ForAll[{a, b, c}, p[a, p[b, c]] == p[p[a, b], c]],
   ForAll[a, p[a, 0] == a],
   ForAll[a, p[a, n[a]] == 0],
   ForAll[{a, b}, p[a, b] == p[b, a]],
   ForAll[{a, b, c}, t[a, t[b, c]] == t[t[a, b], c]],
   ForAll[a, t[a, 1] == a], ForAll[a, t[1, a] == a],
   ForAll[{a, b, c}, t[a, p[b, c]] == p[t[a, b], t[a, c]]],
   ForAll[{a, b, c}, t[p[b, c], a] == p[t[b, a], t[c, a]]]};

proof = FindEquationalProof[t[n[a], n[a]] == t[a, a], ringAxioms];

proof["ProofNotebook"]

단계를 직접 계산하는 것은 쉽지 않으므로 "증거 그래프"의 공리에서 결론까지의 경로 수로 계산합니다.

graph = proof["ProofGraph"];
score = Sum[
  Length[FindPath[graph, axiom, "Conclusion 1", Infinity, 
    All]], {axiom, 
   Select[VertexList[graph], StringMatchQ["Axiom " ~~ __]]}]

온라인으로 사용해보십시오!

이것은 코드에 의해 생성 된 증거입니다.

Axiom 1

We are given that:

x1==p[x1, 0]

Axiom 2

We are given that:

x1==t[x1, 1]

Axiom 3

We are given that:

x1==t[1, x1]

Axiom 4

We are given that:

p[x1, x2]==p[x2, x1]

Axiom 5

We are given that:

p[x1, p[x2, x3]]==p[p[x1, x2], x3]

Axiom 6

We are given that:

p[x1, n[x1]]==0

Axiom 7

We are given that:

p[t[x1, x2], t[x3, x2]]==t[p[x1, x3], x2]

Axiom 8

We are given that:

p[t[x1, x2], t[x1, x3]]==t[x1, p[x2, x3]]

Axiom 9

We are given that:

t[x1, t[x2, x3]]==t[t[x1, x2], x3]

Hypothesis 1

We would like to show that:

t[n[a], n[a]]==t[a, a]

Critical Pair Lemma 1

The following expressions are equivalent:

p[0, x1]==x1

Proof

Note that the input for the rule:

p[x1_, x2_]\[TwoWayRule]p[x2_, x1_]

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, 0]->x1

where these rules follow from Axiom 4 and Axiom 1 respectively.

Critical Pair Lemma 2

The following expressions are equivalent:

p[x1, p[n[x1], x2]]==p[0, x2]

Proof

Note that the input for the rule:

p[p[x1_, x2_], x3_]->p[x1, p[x2, x3]]

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, n[x1_]]->0

where these rules follow from Axiom 5 and Axiom 6 respectively.

Critical Pair Lemma 3

The following expressions are equivalent:

t[p[1, x1], x2]==p[x2, t[x1, x2]]

Proof

Note that the input for the rule:

p[t[x1_, x2_], t[x3_, x2_]]->t[p[x1, x3], x2]

contains a subpattern of the form:

t[x1_, x2_]

which can be unified with the input for the rule:

t[1, x1_]->x1

where these rules follow from Axiom 7 and Axiom 3 respectively.

Critical Pair Lemma 4

The following expressions are equivalent:

t[x1, p[1, x2]]==p[x1, t[x1, x2]]

Proof

Note that the input for the rule:

p[t[x1_, x2_], t[x1_, x3_]]->t[x1, p[x2, x3]]

contains a subpattern of the form:

t[x1_, x2_]

which can be unified with the input for the rule:

t[x1_, 1]->x1

where these rules follow from Axiom 8 and Axiom 2 respectively.

Critical Pair Lemma 5

The following expressions are equivalent:

t[p[1, x1], 0]==t[x1, 0]

Proof

Note that the input for the rule:

p[x1_, t[x2_, x1_]]->t[p[1, x2], x1]

contains a subpattern of the form:

p[x1_, t[x2_, x1_]]

which can be unified with the input for the rule:

p[0, x1_]->x1

where these rules follow from Critical Pair Lemma 3 and Critical Pair Lemma 1 respectively.

Critical Pair Lemma 6

The following expressions are equivalent:

t[0, 0]==t[1, 0]

Proof

Note that the input for the rule:

t[p[1, x1_], 0]->t[x1, 0]

contains a subpattern of the form:

p[1, x1_]

which can be unified with the input for the rule:

p[x1_, 0]->x1

where these rules follow from Critical Pair Lemma 5 and Axiom 1 respectively.

Substitution Lemma 1

It can be shown that:

t[0, 0]==0

Proof

We start by taking Critical Pair Lemma 6, and apply the substitution:

t[1, x1_]->x1

which follows from Axiom 3.

Critical Pair Lemma 7

The following expressions are equivalent:

t[x1, 0]==t[p[x1, 1], 0]

Proof

Note that the input for the rule:

t[p[1, x1_], 0]->t[x1, 0]

contains a subpattern of the form:

p[1, x1_]

which can be unified with the input for the rule:

p[x1_, x2_]\[TwoWayRule]p[x2_, x1_]

where these rules follow from Critical Pair Lemma 5 and Axiom 4 respectively.

Critical Pair Lemma 8

The following expressions are equivalent:

t[0, p[1, x1]]==t[0, x1]

Proof

Note that the input for the rule:

p[x1_, t[x1_, x2_]]->t[x1, p[1, x2]]

contains a subpattern of the form:

p[x1_, t[x1_, x2_]]

which can be unified with the input for the rule:

p[0, x1_]->x1

where these rules follow from Critical Pair Lemma 4 and Critical Pair Lemma 1 respectively.

Critical Pair Lemma 9

The following expressions are equivalent:

t[p[x1, 1], p[1, 0]]==p[p[x1, 1], t[x1, 0]]

Proof

Note that the input for the rule:

p[x1_, t[x1_, x2_]]->t[x1, p[1, x2]]

contains a subpattern of the form:

t[x1_, x2_]

which can be unified with the input for the rule:

t[p[x1_, 1], 0]->t[x1, 0]

where these rules follow from Critical Pair Lemma 4 and Critical Pair Lemma 7 respectively.

Substitution Lemma 2

It can be shown that:

t[p[x1, 1], 1]==p[p[x1, 1], t[x1, 0]]

Proof

We start by taking Critical Pair Lemma 9, and apply the substitution:

p[x1_, 0]->x1

which follows from Axiom 1.

Substitution Lemma 3

It can be shown that:

p[x1, 1]==p[p[x1, 1], t[x1, 0]]

Proof

We start by taking Substitution Lemma 2, and apply the substitution:

t[x1_, 1]->x1

which follows from Axiom 2.

Substitution Lemma 4

It can be shown that:

p[x1, 1]==p[x1, p[1, t[x1, 0]]]

Proof

We start by taking Substitution Lemma 3, and apply the substitution:

p[p[x1_, x2_], x3_]->p[x1, p[x2, x3]]

which follows from Axiom 5.

Critical Pair Lemma 10

The following expressions are equivalent:

t[0, x1]==t[0, p[x1, 1]]

Proof

Note that the input for the rule:

t[0, p[1, x1_]]->t[0, x1]

contains a subpattern of the form:

p[1, x1_]

which can be unified with the input for the rule:

p[x1_, x2_]\[TwoWayRule]p[x2_, x1_]

where these rules follow from Critical Pair Lemma 8 and Axiom 4 respectively.

Critical Pair Lemma 11

The following expressions are equivalent:

t[p[1, 0], p[x1, 1]]==p[p[x1, 1], t[0, x1]]

Proof

Note that the input for the rule:

p[x1_, t[x2_, x1_]]->t[p[1, x2], x1]

contains a subpattern of the form:

t[x2_, x1_]

which can be unified with the input for the rule:

t[0, p[x1_, 1]]->t[0, x1]

where these rules follow from Critical Pair Lemma 3 and Critical Pair Lemma 10 respectively.

Substitution Lemma 5

It can be shown that:

t[1, p[x1, 1]]==p[p[x1, 1], t[0, x1]]

Proof

We start by taking Critical Pair Lemma 11, and apply the substitution:

p[x1_, 0]->x1

which follows from Axiom 1.

Substitution Lemma 6

It can be shown that:

p[x1, 1]==p[p[x1, 1], t[0, x1]]

Proof

We start by taking Substitution Lemma 5, and apply the substitution:

t[1, x1_]->x1

which follows from Axiom 3.

Substitution Lemma 7

It can be shown that:

p[x1, 1]==p[x1, p[1, t[0, x1]]]

Proof

We start by taking Substitution Lemma 6, and apply the substitution:

p[p[x1_, x2_], x3_]->p[x1, p[x2, x3]]

which follows from Axiom 5.

Substitution Lemma 8

It can be shown that:

p[x1, p[n[x1], x2]]==x2

Proof

We start by taking Critical Pair Lemma 2, and apply the substitution:

p[0, x1_]->x1

which follows from Critical Pair Lemma 1.

Critical Pair Lemma 12

The following expressions are equivalent:

n[n[x1]]==p[x1, 0]

Proof

Note that the input for the rule:

p[x1_, p[n[x1_], x2_]]->x2

contains a subpattern of the form:

p[n[x1_], x2_]

which can be unified with the input for the rule:

p[x1_, n[x1_]]->0

where these rules follow from Substitution Lemma 8 and Axiom 6 respectively.

Substitution Lemma 9

It can be shown that:

n[n[x1]]==x1

Proof

We start by taking Critical Pair Lemma 12, and apply the substitution:

p[x1_, 0]->x1

which follows from Axiom 1.

Critical Pair Lemma 13

The following expressions are equivalent:

x1==p[n[x2], p[x2, x1]]

Proof

Note that the input for the rule:

p[x1_, p[n[x1_], x2_]]->x2

contains a subpattern of the form:

n[x1_]

which can be unified with the input for the rule:

n[n[x1_]]->x1

where these rules follow from Substitution Lemma 8 and Substitution Lemma 9 respectively.

Critical Pair Lemma 14

The following expressions are equivalent:

t[x1, x2]==p[n[x2], t[p[1, x1], x2]]

Proof

Note that the input for the rule:

p[n[x1_], p[x1_, x2_]]->x2

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, t[x2_, x1_]]->t[p[1, x2], x1]

where these rules follow from Critical Pair Lemma 13 and Critical Pair Lemma 3 respectively.

Critical Pair Lemma 15

The following expressions are equivalent:

t[x1, x2]==p[n[x1], t[x1, p[1, x2]]]

Proof

Note that the input for the rule:

p[n[x1_], p[x1_, x2_]]->x2

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, t[x1_, x2_]]->t[x1, p[1, x2]]

where these rules follow from Critical Pair Lemma 13 and Critical Pair Lemma 4 respectively.

Critical Pair Lemma 16

The following expressions are equivalent:

p[1, t[x1, 0]]==p[n[x1], p[x1, 1]]

Proof

Note that the input for the rule:

p[n[x1_], p[x1_, x2_]]->x2

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, p[1, t[x1_, 0]]]->p[x1, 1]

where these rules follow from Critical Pair Lemma 13 and Substitution Lemma 4 respectively.

Substitution Lemma 10

It can be shown that:

p[1, t[x1, 0]]==1

Proof

We start by taking Critical Pair Lemma 16, and apply the substitution:

p[n[x1_], p[x1_, x2_]]->x2

which follows from Critical Pair Lemma 13.

Critical Pair Lemma 17

The following expressions are equivalent:

t[t[x1, 0], 0]==t[1, 0]

Proof

Note that the input for the rule:

t[p[1, x1_], 0]->t[x1, 0]

contains a subpattern of the form:

p[1, x1_]

which can be unified with the input for the rule:

p[1, t[x1_, 0]]->1

where these rules follow from Critical Pair Lemma 5 and Substitution Lemma 10 respectively.

Substitution Lemma 11

It can be shown that:

t[x1, t[0, 0]]==t[1, 0]

Proof

We start by taking Critical Pair Lemma 17, and apply the substitution:

t[t[x1_, x2_], x3_]->t[x1, t[x2, x3]]

which follows from Axiom 9.

Substitution Lemma 12

It can be shown that:

t[x1, 0]==t[1, 0]

Proof

We start by taking Substitution Lemma 11, and apply the substitution:

t[0, 0]->0

which follows from Substitution Lemma 1.

Substitution Lemma 13

It can be shown that:

t[x1, 0]==0

Proof

We start by taking Substitution Lemma 12, and apply the substitution:

t[1, x1_]->x1

which follows from Axiom 3.

Critical Pair Lemma 18

The following expressions are equivalent:

t[x1, t[0, x2]]==t[0, x2]

Proof

Note that the input for the rule:

t[t[x1_, x2_], x3_]->t[x1, t[x2, x3]]

contains a subpattern of the form:

t[x1_, x2_]

which can be unified with the input for the rule:

t[x1_, 0]->0

where these rules follow from Axiom 9 and Substitution Lemma 13 respectively.

Critical Pair Lemma 19

The following expressions are equivalent:

p[1, t[0, x1]]==p[n[x1], p[x1, 1]]

Proof

Note that the input for the rule:

p[n[x1_], p[x1_, x2_]]->x2

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, p[1, t[0, x1_]]]->p[x1, 1]

where these rules follow from Critical Pair Lemma 13 and Substitution Lemma 7 respectively.

Substitution Lemma 14

It can be shown that:

p[1, t[0, x1]]==1

Proof

We start by taking Critical Pair Lemma 19, and apply the substitution:

p[n[x1_], p[x1_, x2_]]->x2

which follows from Critical Pair Lemma 13.

Critical Pair Lemma 20

The following expressions are equivalent:

t[0, t[0, x1]]==t[0, 1]

Proof

Note that the input for the rule:

t[0, p[1, x1_]]->t[0, x1]

contains a subpattern of the form:

p[1, x1_]

which can be unified with the input for the rule:

p[1, t[0, x1_]]->1

where these rules follow from Critical Pair Lemma 8 and Substitution Lemma 14 respectively.

Substitution Lemma 15

It can be shown that:

t[0, x1]==t[0, 1]

Proof

We start by taking Critical Pair Lemma 20, and apply the substitution:

t[x1_, t[0, x2_]]->t[0, x2]

which follows from Critical Pair Lemma 18.

Substitution Lemma 16

It can be shown that:

t[0, x1]==0

Proof

We start by taking Substitution Lemma 15, and apply the substitution:

t[x1_, 1]->x1

which follows from Axiom 2.

Critical Pair Lemma 21

The following expressions are equivalent:

t[n[1], x1]==p[n[x1], t[0, x1]]

Proof

Note that the input for the rule:

p[n[x1_], t[p[1, x2_], x1_]]->t[x2, x1]

contains a subpattern of the form:

p[1, x2_]

which can be unified with the input for the rule:

p[x1_, n[x1_]]->0

where these rules follow from Critical Pair Lemma 14 and Axiom 6 respectively.

Substitution Lemma 17

It can be shown that:

t[n[1], x1]==p[n[x1], 0]

Proof

We start by taking Critical Pair Lemma 21, and apply the substitution:

t[0, x1_]->0

which follows from Substitution Lemma 16.

Substitution Lemma 18

It can be shown that:

t[n[1], x1]==n[x1]

Proof

We start by taking Substitution Lemma 17, and apply the substitution:

p[x1_, 0]->x1

which follows from Axiom 1.

Critical Pair Lemma 22

The following expressions are equivalent:

t[n[1], t[x1, x2]]==t[n[x1], x2]

Proof

Note that the input for the rule:

t[t[x1_, x2_], x3_]->t[x1, t[x2, x3]]

contains a subpattern of the form:

t[x1_, x2_]

which can be unified with the input for the rule:

t[n[1], x1_]->n[x1]

where these rules follow from Axiom 9 and Substitution Lemma 18 respectively.

Substitution Lemma 19

It can be shown that:

n[t[x1, x2]]==t[n[x1], x2]

Proof

We start by taking Critical Pair Lemma 22, and apply the substitution:

t[n[1], x1_]->n[x1]

which follows from Substitution Lemma 18.

Critical Pair Lemma 23

The following expressions are equivalent:

t[x1, n[1]]==p[n[x1], t[x1, 0]]

Proof

Note that the input for the rule:

p[n[x1_], t[x1_, p[1, x2_]]]->t[x1, x2]

contains a subpattern of the form:

p[1, x2_]

which can be unified with the input for the rule:

p[x1_, n[x1_]]->0

where these rules follow from Critical Pair Lemma 15 and Axiom 6 respectively.

Substitution Lemma 20

It can be shown that:

t[x1, n[1]]==p[n[x1], 0]

Proof

We start by taking Critical Pair Lemma 23, and apply the substitution:

t[x1_, 0]->0

which follows from Substitution Lemma 13.

Substitution Lemma 21

It can be shown that:

t[x1, n[1]]==n[x1]

Proof

We start by taking Substitution Lemma 20, and apply the substitution:

p[x1_, 0]->x1

which follows from Axiom 1.

Critical Pair Lemma 24

The following expressions are equivalent:

n[t[x1, x2]]==t[x1, t[x2, n[1]]]

Proof

Note that the input for the rule:

t[x1_, n[1]]->n[x1]

contains a subpattern of the form:

t[x1_, n[1]]

which can be unified with the input for the rule:

t[t[x1_, x2_], x3_]->t[x1, t[x2, x3]]

where these rules follow from Substitution Lemma 21 and Axiom 9 respectively.

Substitution Lemma 22

It can be shown that:

t[n[x1], x2]==t[x1, t[x2, n[1]]]

Proof

We start by taking Critical Pair Lemma 24, and apply the substitution:

n[t[x1_, x2_]]->t[n[x1], x2]

which follows from Substitution Lemma 19.

Substitution Lemma 23

It can be shown that:

t[n[x1], x2]==t[x1, n[x2]]

Proof

We start by taking Substitution Lemma 22, and apply the substitution:

t[x1_, n[1]]->n[x1]

which follows from Substitution Lemma 21.

Substitution Lemma 24

It can be shown that:

t[a, n[n[a]]]==t[a, a]

Proof

We start by taking Hypothesis 1, and apply the substitution:

t[n[x1_], x2_]->t[x1, n[x2]]

which follows from Substitution Lemma 23.

Conclusion 1

We obtain the conclusion:

True

Proof

Take Substitution Lemma 24, and apply the substitution:

n[n[x1_]]->x1

which follows from Substitution Lemma 9.
당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.