원자 이온화 에너지 압축


22

이것은 다른 유형의 압축 문제입니다. 일반적인 문제에서는 목록을 정확하게 다시 작성해야합니다. 여기에서 원하는 방식으로 값을 반올림 할 수 있습니다. 캐치는 무엇입니까? 당신의 점수는 당신의 결과가 얼마나 잘못되었는지에 따라 불이익을받습니다.

이 질문의 맨 아래에는 첫 번째 108 요소에 대한 첫 번째 이온화 에너지 목록이 있습니다. 프로그램 실행시이 목록의 합리적으로 정확한 사본을 출력해야합니다. 입력 또는 인수가 없습니다. 점수를 매기려면 출력이 결정적이어야합니다 (매번 동일한 출력).

출력 형식

프로그램 / 기능은 원자 번호가 증가하는 순서로 정렬 된 108 개의 숫자 목록을 출력해야합니다. 이 목록은 적절한 형식 일 수 있습니다. 아래의 소스 데이터는 수소에서 수소까지 올바른 순서로 제공됩니다.

채점

당신의 점수는 바이트 단위의 프로그램 길이와 반올림 패널티가 될 것입니다. 각 요소에 대해 반올림 패널티가 계산되고 총 패널티가 적용되도록 합산됩니다.

예를 들어, 숫자를 보자 11.81381. 프로그램이 잘못된 값을 출력한다고 가정 해 봅시다 11.81299999.

  1. 먼저 두 숫자에 동일한 거듭 제곱 10을 곱하면 더 이상 실제 값에 소수점이 없습니다 1181381, 1181299.999. 실제 값의 후행 0은 중요한 것으로 간주됩니다.

  2. 그런 다음 절대 오차가 결정되어 절대 오차가 결정 81.001됩니다.

  3. 마지막으로이 요소의 페널티를로 계산합니다 max(0, log10(err * 4 - 1)) -> 2.50921. 이 수식은 <0.5 미만의 오차가 반올림하지 않고 (반올림 내에서 답변이 정확하기 때문에) 페널티를주지 않도록 선택되었으며, 숫자를 특정 소수점 이하 자릿수로 반올림하면 점수에서 순 이익을 제공 할 것입니다 다른 압축).

다음은 페널티 계산 프로그램 의 Try-It-Online 구현입니다. 이 프로그램에 대한 입력은 한 줄에 하나씩 숫자 목록으로 제공됩니다. 이 프로그램의 결과는 총 페널티와 요소 별 점수입니다.

데이터

아래 숫자 목록은 원자 번호 1에서 108까지의 올바른 순서로 대상 데이터입니다.

출처

13.598434005136
24.587387936
5.391714761
9.322699
8.2980190
11.260296
14.53413
13.618054
17.42282
21.564540
5.1390767
7.646235
5.985768
8.151683
10.486686
10.36001
12.96763
15.7596112
4.34066354
6.11315520
6.56149
6.82812
6.746187
6.76651
7.434018
7.9024678
7.88101
7.639877
7.726380
9.3941990
5.9993018
7.899435
9.7886
9.752392
11.81381
13.9996049
4.177128
5.69486720
6.21726
6.63390
6.75885
7.09243
7.11938
7.36050
7.45890
8.33686
7.576234
8.993822
5.7863552
7.343917
8.608389
9.00966
10.45126
12.1298431
3.893905548
5.211664
5.5769
5.5386
5.473
5.5250
5.582
5.64371
5.670385
6.14980
5.8638
5.93905
6.0215
6.1077
6.18431
6.254159
5.425871
6.825069
7.549571
7.86403
7.83352
8.43823
8.96702
8.95883
9.225553
10.437504
6.1082871
7.4166796
7.285516
8.414
9.31751
10.7485
4.0727409
5.278424
5.380226
6.3067
5.89
6.19405
6.2655
6.0258
5.9738
5.9914
6.1978
6.2817
6.3676
6.50
6.58
6.65
4.90
6.01
6.8
7.8
7.7
7.6

기준 및 팁

위의 소스 데이터는 906 바이트이며 특정 압축 도구는 500 바이트 이하로 가져올 수 있습니다. 흥미로운 솔루션은 지능적인 반올림을 수행하거나 대수 공식을 사용하거나 다른 기술을 사용하여 압축 만하는 것보다 적은 바이트로 대략적인 값을 출력하는 것입니다. 그러나 언어 간 이러한 상충 관계를 판단하기는 어렵습니다. 일부 언어의 경우 압축만으로도 최적 일 수 있지만 다른 언어에는 압축 도구가 전혀 없을 수 있으므로 언어에 따라 점수가 크게 달라질 것으로 예상됩니다. "언어 간의 경쟁이 아니라 언어 간의 경쟁"이라는 철학에 따라 진행됩니다.

주기율표의 추세를 활용하는 것이 유용 할 것으로 예상됩니다. 아래는 내가 찾은 이온화 에너지 그래프이며, 이러한 추세를 볼 수 있습니다.

여기에 이미지 설명을 입력하십시오


2
흠, 그래프는 몇 가지 흥미로운 트렌드를 보여줍니다. 압축에 도움이 될 것 입니다.
Erik the Outgolfer

3
참고 : 이것은 꽤 실험적인 도전입니다. 점수 체계는 독특합니다. 잘 작동하기를 바랍니다.
PhiNotPi

아주 좋은 도전입니다. 불행히도, 참조의 정확도가 너무 높아서 물리적 동기 근사 공식 (실제로 두 자리 이상을 예측할 수는 없음)은 문자의 압축과 경쟁 할 기회가 거의 없습니다. (실제로 Schrödinger 방정식을 실제로 풀지 않는 짧은 시간도 마찬가지입니다.) 페널티 수식의 로그가 없으면 IMO가 더 재미있을 것이므로 유효 숫자가 실제로 중요합니다.
반 시계 회전을 중단

@PhiNotPi 채점 방식이 아닌 고유 한 권리 ?
Esolanging 과일

1
@EsolangingFruit 그래 나는 유사점을 참조하십시오. 나는 이것이 페널티가 "연속적"이라는 점에서 독특하다고 생각합니다. 즉, 특정 출력에 대해 단순히 옳고 그른 것이 아니기 때문에 각 숫자를 퍼지 해야하는 정도를 찾는 것입니다. (이 점수 체계는 2015 년에 처음 샌드 박스를 만들 때 훨씬 독창적 이었습니다 .)
PhiNotPi

답변:


6

깨끗함 , 540 바이트 + 64.396 페널티 = 604.396

참고 : 가독성을 위해 [Char]대부분의 바이트는 인쇄 할 수 없으므로 리터럴의 모든 바이트를 이스케이프 처리 했습니다. 그러나 Clean은 자연스럽게 인코딩 독립적으로 소스 파일을 가져 오기 때문에 (null 제외) 이스케이프 당 하나의 바이트 (null, quote 및 개행 제외)로만 계산됩니다.

import StdEnv,GenLib
c[h:t]=[(toInt h>>i)rem 2\\i<-[0..7]]++c t
c[]=[]
r[]=[]
r l=[7<<29+2^62+sum[d<<p\\d<-l&p<-[32..53]]:r(drop 22l)]
u::Maybe[Real]
u=uncompress{e\\e<-[108:r(c['\145\062\353\227\045\336\021\131\341\224\212\225\230\140\121\241\231\027\321\306\361\254\075\154\161\041\144\255\346\110\371\126\172\155\361\127\152\023\350\222\117\116\341\222\155\357\351\072\341\153\315\025\171\317\141\367\076\232\377\323\206\301\257\235\103\154\157\274\035\010\347\167\142\370\355\074\172\320\347\036\165\262\210\364\177\025\144\176\303\223\143\116\340\270\012\172\062\377\257\141\265\320\342\261\225\347\215\165\044\152\017\011\133\251\027\347\243\307\231\304\165\351\325\035\036\053\010\341\344\131\363\207\072\045\327\012\130\347\167\023\312\023\210\013\347\244\236\020\172\153\362\370\142\123\276\116\226\341\211\245\105\136\145\146\130\367\123\026\312\244\225\347\152\225\145\142\207\164\227\145\360\105\140\201\041\271\141\273\274\230\020\101\166\101\133\171\063\155\302\062\036\061\335\147\130\365\175\201\203\035\357\341\272\172\270\067\047\002\200\223\342\156\230\253\152\347\105\322\335\117\203\220\242\342\316\137\311\247\004\155\164\124\131\205\325\203\116\306\365\170\325\032\143\337\017\331\232\006\266\122\176\305\334\137\214\312\130\035\110\306\206\227\001\000\150\353\121\132\146\246\226\231\071\365\050\140\063\063\333\314\314\307\314\354\231\231\171'])]}

온라인으로 사용해보십시오!

이것은 Clean의 일반적인 압축 기능 (기술적으로 실제로 압축이 아니라 이진 직렬화)을 활용하여 실제 이점을 얻을 수 있었던 첫 번째 과제입니다.

[Real]64 비트 부동 소수점 숫자의 목록으로 시작했습니다 . 이 목록을 직렬화 한 후 상위 10 비트 (각 숫자에 대해 동일 함)와 하위 32 비트의 최적 구성을 상수로 단순화했습니다 7<<29+2^62. 숫자 당 나머지 22 비트는 각각 2.75 자로 변환되고 문자열로 인코딩됩니다.

이것은 모든 이스케이프를 포함 하여 전체 압축 상수를 302 바이트로 유지합니다 !


1
CleanSnappy를 사용하면 압축률을 높일 수 있습니다. cloogle.org/src/#CleanSnappy/Snappy / github.com/camilstaps/CleanSnappy

5

파이썬 3 , 355 + 202 353 바이트 + 198 페널티 = 551

for i in'趐￵㠡愍噢甹靍跄땠㖀侙㹐哜洫毙蛿ꐏⴰ㾤䑎䜕䘻䙱䵤剄刋侈偯懌㹴刼旧斆竼醽⭼㭉䂹䔏䙜䧕䨝䲠䶦囊仟嶡㰽䱴妝巋泍繆⢉㙁㨎㦨㣺㦄㨜㫀㬈䀅㴋㷔㺯㾕䁡䄛㡼䜍亘凞册埘嵙嵃怊沨㾗䴵䯘垗惿濥⩦㛳㠂䆧㵑䁻䄺㺻㸰㹟䂅䅥䉊䎫䒀䔺㌃㺑䛊儳倩伞':print(ord(i)/2665)

온라인으로 사용해보십시오!

0xffff (65535)단일 3 바이트 유니 코드 문자로 저장할 수있는 최대 값이므로 상한으로 사용 했습니다.
가장 높은 이온화 에너지는 ~ 24.587이므로, 이는 비율을 제공합니다 2665.
문자열 자체를 생성하기 위해 스 니펫을 사용했습니다 ''.join([chr(int(round(n*2665)))for n in ionization_energies])(python2에서 사용해야합니다 unichr), 콘솔에서 문자를 인쇄하거나 인쇄하지 못할 수 있습니다.


4 바이트 문자, 462 바이트 + 99 페널티 = 561

for i in'򖛬􏿸𻩕񧈞񛳀񼤓򠲊򖩥󀯗󮣬𸶞񔥢񂍻񚋙񴀥񲦹򏝅򮕴𰁌񃨇񈥢񋢔񊨓񊶬񒏒񗚽񗋰񔡂񕞒񧻆񂗠񗘳񬒕񫸬򂬋򚷮𮍚𾿾񄱴񉘳񊱑񎝜񎰡񑛏񒠺񜎠񓳾񣟨񀀯񑏠񟎯񣪶񳧟򆋻𫄹𹩷𽬜𽑕𼢹𽇭𽰄𾛰𾮨񄂄񀷥񁬶񂧎񃤐񄚟񅋼𼁡񋠊񓡆񖿯񖪈񝖑񣌪񣆷񦃬񳝰񃤫񒃁񐦉񝅇񧄳񶹼𭃠𺙈𻡍񅱉񁊈񄡙񅓾񂪑񂅝񂑺񄤃񅟜񆜑񇺀񈲩񉤍𶍍񂟅񋎚񖒚񕋦񔄳':print(ord(i)/45312)

온라인으로 사용해보십시오!
같은 생각이지만 최대 값은0x110000


단일 3 바이트 유니 코드 문자가 왜 0x100**2값만 저장할 수 있고 저장 하지 않을 수 0x100**3있습니까?
Jonathan Frech

나는 현재 알려진 가장 높은 원자 번호는 118이라고 생각합니다 –이 경우 고려할 가장 높은 것은 ~ 24가 아니라 108입니다. 아마도 eV의 이온화 에너지를 의미했을 것입니다.
Jonathan Frech

@JonathanFrech의 요점은 UTF-8입니다. 다른 인코딩이 더 효율적입니다.
Dennis

4

C, 49 바이트 + 626.048 페널티 = 675.048

f(i){for(i=0;i<108;)printf("%f\n",5.5+i++/13%2);}

온라인으로 사용해보십시오!


5
37 바이트 : f(i){for(i=0;i++<108;)printf("6\n");}; 페널티 : 625.173330827107; 총 = 662,173330827
Tsathoggua

1
@Tsathoggua 흠, 나는 그것을 시도하고 더 높은 페널티를 얻었다 고 생각했다. 내가 틀렸다고 생각한다. f(i){for(i=0;i<108;)puts("6");}31 바이트에서 동일한 작업을 수행합니다.
Steadybox

당신은 필요 i++합니다 ( "31"에서)도 있지만 f(i){for(i=108;i;i--)puts("6");}않습니다 (32)
조나단 앨런

2
@JonathanAllan Whoops. f(i){for(i=108;i--;)puts("6");}그것을 다시 31로 가져옵니다.
Steadybox

4

CJam (389 바이트 + 33.09 페널티 => 422.09)

xxd 인코딩 :

0000000: 2256 3232 7c24 1bf9 7116 2f43 c82b 110e  "V22|$..q./C.+..
0000010: 6b93 4525 1cb3 4118 4afc 4d05 5c22 e15a  k.E%..A.J.M.\".Z
0000020: 11bc 563c 38e4 626c 1efb 6b10 c229 0e35  ..V<8.bl..k..).5
0000030: 873d 15df 2f71 36ca 404d 54d9 4979 17ba  .=../q6.@MT.Iy..
0000040: 4938 a953 6fb6 5f04 75f0 5c22 5c6b 39e5  I8.So._.u.\"\k9.
0000050: 3073 6fbd 343e fb36 4fff 357c 8c36 10f3  0so.4>.6O.5|.6..
0000060: 3b3c 37cd 3f1c 10a1 3f06 933d 0f1d fa3d  ;<7.?...?..=...=
0000070: 67e8 4549 6a9c 2f7f 24be 3f99 4713 e147  g.EIj./.$.?.G..G
0000080: 011c e14f 20d5 577f 668d 2135 30c2 2d47  ...O .W.f.!50.-G
0000090: 45d1 315e bc35 8936 0987 385e d238 7a9f  E.1^.5.6..8^.8z.
00000a0: 3af1 3b55 f441 2cbc 3c4e 8843 7ceb 2e25  :.;U.A,.<N.C|..%
00000b0: 1d93 3a60 15f1 4237 3fb0 4404 f949 e750  ..:`..B7?.D..I.P
00000c0: 423d b21e 265b 7cf6 2958 df2c 4edf 2c27  B=..&[|.)X.,N.,'
00000d0: c32b e42c 992c d32d 1394 2d2e 3cd9 3119  .+.,.,.-..-.<.1.
00000e0: b22e 74c3 2f41 cb30 9630 6ea4 313c dd32  ..t./A.0.0n.1<.2
00000f0: 04a1 2b34 0be1 364c 6fb8 3c32 61af 3e74  ..+4..6Lo.<2a.>t
0000100: e23e 55c3 4160 af43 6f8e 436a f544 733d  .>U.A`.Co.Cj.Ds=
0000110: eb49 e030 6e71 b43b 2ad7 3a24 af41 d345  .I.0nq.;*.:$.A.E
0000120: 5c22 c84a 7f9d 204a 3ea5 2a1d 0dcb 2b05  \".J.. J>.*...+.
0000130: 2cfd 32ba af31 46da 320f ef30 1ab5 2fe5  ,.2..1F.2..0../.
0000140: 2ff7 314a c632 20ba 3278 b6b4 34d1 b5a7  /.1J.2 .2x..4...
0000150: b0b6 bebd bc22 7b69 3235 362b 3262 283b  ....."{i256+2b(;
0000160: 287d 2531 6125 7b32 253a 2b5f 323e 315c  (}%1a%{2%:+_2>1\
0000170: 2b32 6232 405f 2c33 2d5c 323c 3262 2d23  +2b2@_,3-\2<2b-#
0000180: 642f 4e7d 2f                             d/N}/

기본적으로 이것은

"MAGIC STRING"{i256+2b(;(}%1a%{2%:+_2>1\+2b2@_,3-\2<2b-#d/N}/

사용자 지정 가변 너비 부동 소수점 형식을 사용하여 숫자를 저장합니다. 지수에 대해 2 비트로 충분합니다. 가수는 5의 비트부터 47 비트까지 7의 배수로 얻을 수 있습니다. 바이트 당 나머지 비트는 구분 기호로 사용됩니다.

온라인 데모 를 만들기 위해 매직 스트링을 복사 할 때 약간의 손상이 발생하여 약 2 점의 벌점을 얻습니다. URL을 직접 작성하는 방법을 알아야합니다 ...


생성 프로그램 :

e# Score calculation
{1$`'.+'.%1=,10\#_@*@@*-z 4*1- 0e> ml10ml/0e>}:E;

q~]

e# Custom float format
e# Exponent goes from 2^1 to 2^4, so 2 bits
e# Each byte has 1 bit for continuation, so 7 bits available
e# That means the options for the mantissa are 5 bits, 12 bits, 19 bits, 26 bits, 33 bits, 40 bits, 47 bits
{
  :X
  0\{2/\)\_2<!}g
  e# Stack: exponent mantissa
  2 47#*i2b(;
  e# Stack: exponent mantissa-bits
  W%7/W%Wf%:M
  7,{
    )M<e_
    1_$+2b2@,#d/
  }%
  2 3$#f*
  X\f{E}
  _,,.+
  _:e<
  #)<

  \(4+2b(;\+e_7/
  _,,:!W%\.+2fb:c
}%
""*`

온라인 데모


자체 참고 사항 : 고정 소수점은 약 1 포인트를 절약합니다.
피터 테일러

자체 참고 사항 : 이스케이프 처리를 제거하기 위해 문자열을 조정 "하면 오류가 너무 커져 가치가 있습니까?
피터 테일러

4

젤리 ,  379 (361)  360 바이트 + 0 페널티 = 360

Peter Taylor의 관측 값을 사용하여 -18을 사용합니다 (10 차 값은 1 또는 2를 선행하지만 1 차 값은 그렇지 않음).

<3Ḣ‘_L⁵*×Ḍ
“KẸ⁺dzⱮÑ2⁵İ2ṭ¬⁴²¬¶9°ß°øİẆGẊœ%X(¢ṆḢ/8¬Ɗ’b7µ18,-;_3+\⁺Ṭœṗ“SŒƥŻƭ°}MḋṘḥfyɼ{ṅĊLƝġœ⁺ḟ8ḶhỊDṭ&æ%*ɱ¬ =¦ẉ Qh"¶:ḌĊ€ĖṢė°ġṀƬmẓSṃ÷E⁴Ȥ⁼ḋ#ØĖḂ2øzẸżƈ¥Ȧƥ7¢®|ḳẊṆƙƲɦḟɼṖỊɲṁẉɗ6ẇSɗ⁴ẉİt]ẓeṆHṚƑ½>]ɦ~T¢~ẆẆA`/6ƭṡxṠKG£Ḅ+wḃḣỤw×ḌŻƲF>Ụ]5bJḤḟCḞİḶ|ȥ9Ỵ0ụKṗT⁴ƥƁṖı×ṄtTĊG©ṀḥṬƭʂd½ḊȦуŀṣ¹ʋṖẓYL²ṅṿ&ẏdDṬIɦỵ¹b,ḷṣƭ#P'µ{GTƇẹ¥L8SƥÑṆẈėẎßṀḷƓ⁷ðḳċ¿ḶM_ḲẈg9ḢĠi+LṭẹḲẎ¤g<ṘJJĿßæ⁺(ɲỴ3ɲgkSḃIƙṭ.Ỵ&_:cĿƝı’D¤Ç€

온라인으로 사용해보십시오!

방법?

이 두 상수 (AKA nilads)를 만듭니다.

  • (A) 사용 된 모든 십진수 (즉, 그들이 합류 한 곳과 소수점 자리 구분자를 무시하고 합쳐진 숫자)
  • (B) 각 숫자에 사용 된 유효 숫자의 수

그런 다음 그것들을 사용하여 숫자의 부동 소수점 표현을 재구성합니다.

전체 프로그램은 다음과 같은 형식입니다.

<3Ḣ‘_L⁵*×Ḍ
“...’b7µ18,-;_3+\⁺Ṭœṗ“...’D¤Ç€

(여기서 ...B 및 A를 구성하기위한 인코딩 된 숫자가 있음)
는 다음과 같이 작동합니다.

<3Ḣ‘_L⁵*×Ḍ - Link 1, conversion helper: list of digits  e.g. [1,2,9,6,7,6,3]
<3         - less than three?                                [1,1,0,0,0,0,0]
  Ḣ        - head                                            1
   ‘       - increment                                       2
     L     - length                                          7
    _      - subtract                                        -5
      ⁵    - literal ten                                     10
       *   - exponentiate                                    0.00001
         Ḍ - undecimal (convert from base 10)                1296763
        ×  - multiply                                        12.96763
           - i.e. go from digits to a number between 3 and 30

“...’b7µ18,-;_3+\⁺Ṭœṗ“...’D¤Ç€ - Main link: no arguments
“...’                          - base 250 literal = 16242329089425509505495393436399830365761075941410177200411131173280169129083782003564646
     b7                        - to base seven = [2,0,4,3,2,4,2,4,3,2,3,3,4,2,3,5,3,3,0,3,4,2,4,4,1,4,3,4,3,2,1,5,3,5,1,5,0,3,3,3,3,3,3,3,4,3,4,2,3,2,4,5,4,0,1,3,2,4,2,5,4,2,2,4,2,3,4,4,3,3,3,2,3,3,3,3,4,4,3,3,2,0,5,3,5,2,3,1,1,6,2,3,3,3,3,3,3,1,3,3,3,3,2,3,3]
       µ                       - start a new monadic chain, call that x
        18,-                   - integer list literal = [18,-1]
            ;                  - concatenate with x = [18,-1,2,0,4,3,2,4,2,4,3,2,3,3,4,2,3,5,3,3,0,3,4,2,4,4,1,4,3,4,3,2,1,5,3,5,1,5,0,3,3,3,3,3,3,3,4,3,4,2,3,2,4,5,4,0,1,3,2,4,2,5,4,2,2,4,2,3,4,4,3,3,3,2,3,3,3,3,4,4,3,3,2,0,5,3,5,2,3,1,1,6,2,3,3,3,3,3,3,1,3,3,3,3,2,3,3]
             _3                - subtract three = [15,-4,-1,-3,1,0,-1,1,-1,1,0,-1,0,0,1,-1,0,2,0,0,-3,0,1,-1,1,1,-2,1,0,1,0,-1,-2,2,0,2,-2,2,-3,0,0,0,0,0,0,0,1,0,1,-1,0,-1,1,2,1,-3,-2,0,-1,1,-1,2,1,-1,-1,1,-1,0,1,1,0,0,0,-1,0,0,0,0,1,1,0,0,-1,-3,2,0,2,-1,0,-2,-2,3,-1,0,0,0,0,0,0,-2,0,0,0,0,-1,0,0]
                \              - cumulative reduce with:
               +               -   addition    = [15,11,10,7,8,8,7,8,7,8,8,7,7,7,8,7,7,9,9,9,6,6,7,6,7,8,6,7,7,8,8,7,5,7,7,9,7,9,6,6,6,6,6,6,6,6,7,7,8,7,7,6,7,9,10,7,5,5,4,5,4,6,7,6,5,6,5,5,6,7,7,7,7,6,6,6,6,6,7,8,8,8,7,4,6,6,8,7,7,5,3,6,5,5,5,5,5,5,5,3,3,3,3,3,2,2,2]
                               -                 ("B" significant figures, with 1 extra for the very first entry and a missing last entry)
                 ⁺             - repeat (the cumulative addition to get
                               -         partition positions) = [15,26,36,43,51,59,66,74,81,89,97,104,111,118,126,133,140,149,158,167,173,179,186,192,199,207,213,220,227,235,243,250,255,262,269,278,285,294,300,306,312,318,324,330,336,342,349,356,364,371,378,384,391,400,410,417,422,427,431,436,440,446,453,459,464,470,475,480,486,493,500,507,514,520,526,532,538,544,551,559,567,575,582,586,592,598,606,613,620,625,628,634,639,644,649,654,659,664,669,672,675,678,681,684,686,688,690]
                  Ṭ            - untruth (1s at those indices) = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,1,0,1,0,1]
                           ¤   - nilad followed by link(s) as a nilad:
                     “...’     -   base 250 literal = 1359843400513624587387936539171476193226998298019011260296145341313618054174228221564540513907677646235598576881516831048668610360011296763157596112434066354611315520656149682812674618767665174340187902467878810176398777726380939419905999301878994359788697523921181381139996049417712856948672062172666339067588570924371193873605074589083368675762348993822578635527343917860838990096610451261212984313893905548521166455769553865473552505582564371567038561498058638593905602156107761843162541595425871682506975495717864037833528438238967028958839225553104375046108287174166796728551684149317511074854072740952784245380226630675896194056265560258597385991461978628176367665065866549060168787776
                          D    -   decimal (to base 10) = [1,3,5,9,8,4,3,4,0,0,5,1,3,6,2,4,5,8,7,3,8,7,9,3,6,5,3,9,1,7,1,4,7,6,1,9,3,2,2,6,9,9,8,2,9,8,0,1,9,0,1,1,2,6,0,2,9,6,1,4,5,3,4,1,3,1,3,6,1,8,0,5,4,1,7,4,2,2,8,2,2,1,5,6,4,5,4,0,5,1,3,9,0,7,6,7,7,6,4,6,2,3,5,5,9,8,5,7,6,8,8,1,5,1,6,8,3,1,0,4,8,6,6,8,6,1,0,3,6,0,0,1,1,2,9,6,7,6,3,1,5,7,5,9,6,1,1,2,4,3,4,0,6,6,3,5,4,6,1,1,3,1,5,5,2,0,6,5,6,1,4,9,6,8,2,8,1,2,6,7,4,6,1,8,7,6,7,6,6,5,1,7,4,3,4,0,1,8,7,9,0,2,4,6,7,8,7,8,8,1,0,1,7,6,3,9,8,7,7,7,7,2,6,3,8,0,9,3,9,4,1,9,9,0,5,9,9,9,3,0,1,8,7,8,9,9,4,3,5,9,7,8,8,6,9,7,5,2,3,9,2,1,1,8,1,3,8,1,1,3,9,9,9,6,0,4,9,4,1,7,7,1,2,8,5,6,9,4,8,6,7,2,0,6,2,1,7,2,6,6,6,3,3,9,0,6,7,5,8,8,5,7,0,9,2,4,3,7,1,1,9,3,8,7,3,6,0,5,0,7,4,5,8,9,0,8,3,3,6,8,6,7,5,7,6,2,3,4,8,9,9,3,8,2,2,5,7,8,6,3,5,5,2,7,3,4,3,9,1,7,8,6,0,8,3,8,9,9,0,0,9,6,6,1,0,4,5,1,2,6,1,2,1,2,9,8,4,3,1,3,8,9,3,9,0,5,5,4,8,5,2,1,1,6,6,4,5,5,7,6,9,5,5,3,8,6,5,4,7,3,5,5,2,5,0,5,5,8,2,5,6,4,3,7,1,5,6,7,0,3,8,5,6,1,4,9,8,0,5,8,6,3,8,5,9,3,9,0,5,6,0,2,1,5,6,1,0,7,7,6,1,8,4,3,1,6,2,5,4,1,5,9,5,4,2,5,8,7,1,6,8,2,5,0,6,9,7,5,4,9,5,7,1,7,8,6,4,0,3,7,8,3,3,5,2,8,4,3,8,2,3,8,9,6,7,0,2,8,9,5,8,8,3,9,2,2,5,5,5,3,1,0,4,3,7,5,0,4,6,1,0,8,2,8,7,1,7,4,1,6,6,7,9,6,7,2,8,5,5,1,6,8,4,1,4,9,3,1,7,5,1,1,0,7,4,8,5,4,0,7,2,7,4,0,9,5,2,7,8,4,2,4,5,3,8,0,2,2,6,6,3,0,6,7,5,8,9,6,1,9,4,0,5,6,2,6,5,5,6,0,2,5,8,5,9,7,3,8,5,9,9,1,4,6,1,9,7,8,6,2,8,1,7,6,3,6,7,6,6,5,0,6,5,8,6,6,5,4,9,0,6,0,1,6,8,7,8,7,7,7,6]
                               -                          ("A" all the required digits in order)
                   œṗ          - partition at truthy indices = [[1,3,5,9,8,4,3,4,0,0,5,1,3,6],[2,4,5,8,7,3,8,7,9,3,6],[5,3,9,1,7,1,4,7,6,1],[9,3,2,2,6,9,9],[8,2,9,8,0,1,9,0],[1,1,2,6,0,2,9,6],[1,4,5,3,4,1,3],[1,3,6,1,8,0,5,4],[1,7,4,2,2,8,2],[2,1,5,6,4,5,4,0],[5,1,3,9,0,7,6,7],[7,6,4,6,2,3,5],[5,9,8,5,7,6,8],[8,1,5,1,6,8,3],[1,0,4,8,6,6,8,6],[1,0,3,6,0,0,1],[1,2,9,6,7,6,3],[1,5,7,5,9,6,1,1,2],[4,3,4,0,6,6,3,5,4],[6,1,1,3,1,5,5,2,0],[6,5,6,1,4,9],[6,8,2,8,1,2],[6,7,4,6,1,8,7],[6,7,6,6,5,1],[7,4,3,4,0,1,8],[7,9,0,2,4,6,7,8],[7,8,8,1,0,1],[7,6,3,9,8,7,7],[7,7,2,6,3,8,0],[9,3,9,4,1,9,9,0],[5,9,9,9,3,0,1,8],[7,8,9,9,4,3,5],[9,7,8,8,6],[9,7,5,2,3,9,2],[1,1,8,1,3,8,1],[1,3,9,9,9,6,0,4,9],[4,1,7,7,1,2,8],[5,6,9,4,8,6,7,2,0],[6,2,1,7,2,6],[6,6,3,3,9,0],[6,7,5,8,8,5],[7,0,9,2,4,3],[7,1,1,9,3,8],[7,3,6,0,5,0],[7,4,5,8,9,0],[8,3,3,6,8,6],[7,5,7,6,2,3,4],[8,9,9,3,8,2,2],[5,7,8,6,3,5,5,2],[7,3,4,3,9,1,7],[8,6,0,8,3,8,9],[9,0,0,9,6,6],[1,0,4,5,1,2,6],[1,2,1,2,9,8,4,3,1],[3,8,9,3,9,0,5,5,4,8],[5,2,1,1,6,6,4],[5,5,7,6,9],[5,5,3,8,6],[5,4,7,3],[5,5,2,5,0],[5,5,8,2],[5,6,4,3,7,1],[5,6,7,0,3,8,5],[6,1,4,9,8,0],[5,8,6,3,8],[5,9,3,9,0,5],[6,0,2,1,5],[6,1,0,7,7],[6,1,8,4,3,1],[6,2,5,4,1,5,9],[5,4,2,5,8,7,1],[6,8,2,5,0,6,9],[7,5,4,9,5,7,1],[7,8,6,4,0,3],[7,8,3,3,5,2],[8,4,3,8,2,3],[8,9,6,7,0,2],[8,9,5,8,8,3],[9,2,2,5,5,5,3],[1,0,4,3,7,5,0,4],[6,1,0,8,2,8,7,1],[7,4,1,6,6,7,9,6],[7,2,8,5,5,1,6],[8,4,1,4],[9,3,1,7,5,1],[1,0,7,4,8,5],[4,0,7,2,7,4,0,9],[5,2,7,8,4,2,4],[5,3,8,0,2,2,6],[6,3,0,6,7],[5,8,9],[6,1,9,4,0,5],[6,2,6,5,5],[6,0,2,5,8],[5,9,7,3,8],[5,9,9,1,4],[6,1,9,7,8],[6,2,8,1,7],[6,3,6,7,6],[6,5,0],[6,5,8],[6,6,5],[4,9,0],[6,0,1],[6,8],[7,8],[7,7],[7,6]]
                            Ç€ - call the last link (1) as a monad for €ach = [13.598434005136,24.587387936000002,5.391714761,9.322699,8.298019,11.260295999999999,14.534129999999998,13.618053999999999,17.422819999999998,21.56454,5.1390766999999995,7.646235,5.985767999999999,8.151683,10.486686,10.360009999999999,12.96763,15.759611200000002,4.34066354,6.1131552000000005,6.561490000000001,6.82812,6.746187,6.76651,7.434018,7.902467799999999,7.881010000000001,7.639876999999999,7.72638,9.394199,5.9993018,7.8994349999999995,9.7886,9.752392,11.81381,13.9996049,4.177128,5.6948672,6.2172600000000005,6.633900000000001,6.758850000000001,7.09243,7.1193800000000005,7.360500000000001,7.458900000000001,8.336860000000001,7.5762339999999995,8.993822,5.7863552,7.343916999999999,8.608388999999999,9.00966,10.45126,12.129843099999999,3.893905548,5.211664,5.5769,5.538600000000001,5.473,5.525,5.582,5.6437100000000004,5.670385,6.149800000000001,5.8638,5.939050000000001,6.0215000000000005,6.1077,6.184310000000001,6.254159,5.425871,6.825069,7.549570999999999,7.8640300000000005,7.833520000000001,8.43823,8.967020000000002,8.95883,9.225553,10.437504,6.1082871,7.416679599999999,7.285515999999999,8.414,9.31751,10.7485,4.072740899999999,5.278423999999999,5.3802259999999995,6.3067,5.89,6.194050000000001,6.2655,6.0258,5.973800000000001,5.9914000000000005,6.1978,6.281700000000001,6.3676,6.5,6.58,6.65,4.9,6.01,6.800000000000001,7.800000000000001,7.7,7.6000000000000005]

" 1 또는 10의 순서인지 여부 "는 쉽습니다. 첫 번째 숫자가 1 또는 2 인 경우 순서는 10입니다. 이는 골프를 더욱 돕거나 비트 배열을 풀 때 더 저렴합니까?
피터 테일러

@PeterTaylor는 알지 못했지만 거의 확실히 바이트를 절약 할 것입니다. 감사합니다!
Jonathan Allan

3

젤리 , 116 바이트 + 429.796016684433 페널티 = 545.796016684433

“tẏØA5X¶tɱḅÐ-ı3OMm⁾¦ȷ #""*00-.Bı0FF_y¤ß÷!"&&)+5,=æ)8=Nc¡ÑÞŒŒŒÞßßñçðıȷñ÷Ø#,//6==@Nȷ*(6AR£ÑØøðñ÷ıııñ÷øþ !€ı#/-,‘+47÷12

온라인으로 사용해보십시오!

특히 화려한 아무것도, 코드 페이지 인덱스리스트, “...‘우리는 추가되는 각 (0과 249 사이의 숫자), (47) , +47다음으로 나누기 12 , ÷12.


3

젤리 , 164 바이트 + 409.846 = 573.846

“?#4ß<Ʋƒ⁻µ`kḞÑ6{ɱ~.ṣ¬⁷Ḷlŀ⁸ẎṘ£ỌgfĖỌƒ⁻ḋN?ḤḞ{ị#qp⁵mp&WṘƙ=/rŻ-vn⁼ẊTị}W;!z€ȦMẊẇİ_D8ỴtṫQAẎḣṬr¥1J3Ƙ~ʋ$ĿẠ7þƭ8ṛM{ịḟƇỵ÷b?°6I@?Ȥ⁾d⁹DẈcȷv5ⱮAJb}øDȯRµ’Ds3Ḍ÷³×⁵$2R;6r⁵¤¤;15r18¤¤¦Y

온라인으로 사용해보십시오!

거기에는 각 에너지의 처음 세 자리 숫자 (압축 된 0 포함)가 압축 된 숫자가 있습니다. 이 세 자리 숫자의 목록을 얻은 Ds3Ḍ다음 각각을 100으로 나누십시오 ÷³. 일부 숫자는 10으로 나눠야하므로 점수를 약간 향상시키기 위해 10을 곱 ×⁵$2R;6r⁵¤¤;15r18¤¤¦합니다.

이전 버전 :

젤리 , 50 바이트 + 571.482 페널티 = 621.482

“¡9;ẋkñ¬nƑḳ_gÐ.RḊụʠṁṬl⁾l>ɼXZĖSṠƈ;cḶ=ß³ṾAiʠʠɼZÞ⁹’DY

온라인으로 사용해보십시오!

각 에너지를 가장 가까운 한 자리 정수로 반올림했습니다. 함께 연결되어 995989999958689999467777788889689999466777777889679999456656666666666657888899996778994556666666666677567888있습니다. “¡9;ẋkñ¬nƑḳ_gÐ.RḊụʠṁṬl⁾l>ɼXZĖSṠƈ;cḶ=ß³ṾAiʠʠɼZÞ⁹’이것을 생성하는 기본 250 숫자입니다. DY 이 숫자의 숫자를 줄 바꿈과 결합합니다.



3

J , 390 바이트 + 183.319 페널티 = 573.319

d=.'5@-103659=-/-02247,...../////1-/1135,-...////0/0-/0124+--------.--....-.///00012.//012,--.-...--......,..///'
f=.'[ZG@=:U]JX-`~/PD~kB+XrjlKzx_hG~ynkq~1e5_k)+DMAY~nB\ M,y5YUOTZ`c.v}"*29JrVvsK~~6K*I<I?j'';F>y3:"~~3<DRZaz!ppf\'
p=.'tj1;p#Iq<M{^Z1c l~''@/q^aH9*~`J}~v8F~gQiGy8~%ye^F`Gt~-~G1ev>R4E$~F{/mKJ[S~HCrfxXkscWHku;t"c IWZF.n1l',9$' '
echo,.(_40+a.i.d)+(100%~_32+a.i.f)+1e4%~_32+a.i.p

온라인으로 사용해보십시오!

나는 숫자를 십진수 네 자리로 반올림하여 정수 부분에 대한 하나의 목록, 첫 번째 두 소수 자릿수에 대한 하나의 목록과 두 번째 2 개의 소수 자릿수에 대한 하나의 목록으로 나눕니다. 각 숫자를 인쇄 가능한 문자로 인코딩했습니다. 디코딩을 위해 관련 문자 목록에서 숫자의 정수 및 소수 부분을 추출하여 부동으로 다시 조립합니다.

J , 602 바이트 + 페널티 = 602

q=.'qy7?JOZp@''T1}Ciz={3L/0rHp/r}`M{m^ZHZSy55MYPBaNcV+\?A%/{eyQxQPkDs8W''@m$\6wZsV%KjI''_9"o\XMCP+vU=S3''c3\IKD@ovEW''4LX2O=>n&dgNktY><Ru_TvNpArL?}Y642=}5Hb"yYsD19$<OP2<|Jo)!8S`^9N3w{Q]968P2VF`[(2HOa%XL*V|,[8PcL)}w8"*l%JNC{amnCNx\yH73(pmJGCDq?8@D$ww{X`t0[o.`$''RB&eXiP|_u#9WBFS%U:3|O.U+is5E$A[c{1MpJ@Dw&^rpM_N:M^:o&!HPX9?0i}{j?%2W20z>Q?AOw!fuTWC"Q{-Er'
f=:3 :0
a=.0$0 while.*#y do.l=.1+{.y
a=.a,<' '-.~":}.l{.y
y=.l}.y
end.a
)
echo;(('.',~":"0)&.>_40+a.i.'5@-103659=-/-02247,...../////1-/1135,-...////0/0-/0124+--------.--....-.///00012.//012,--.-...--......,..///'),.(f 12,10#.inv 94x#._32+a.i.q),.<CR

온라인으로 사용해보십시오!

이번에는 약간 다른 접근 방식을 사용했습니다. 나는 숫자를 2 개의 스트림으로 나눕니다. 첫 번째에는 정수 가능한 부분이 포함되어 있으며 인쇄 가능한 단일 문자로 간단히 인코딩됩니다. 두 번째 스트림은 전체 분수 부분을 포함합니다. 나는 숫자 사이의 모든 간격을 제거하고 길이가 1-9 인 각 하위 문자열 앞에 붙였습니다 (첫 번째 분수를 조정했습니다. 길이는 13 자리입니다). 그런 다음이 목록을 기본 94 번호로 인코딩하여 문자 목록으로 표시했습니다.

동사를 암묵적으로 다시 쓰면 약 20 바이트를 저장할 수 있습니다.


2

버블 403 + 9.12 = 412.12

00000000: 1551 5116 c030 04fb 7718 af20 e2fe 17db  .QQ..0..w.. ....
00000010: f2d1 454d 4322 cae7 d8d5 ef4d 142c db87  ..EMC".....M.,..
00000020: 5bdc 2bd8 785d 6cf4 22ec bc32 7167 f43c  [.+.x]l."..2qg.<
00000030: be38 8bf0 c4cb 8345 fb54 4759 9423 f8a6  .8.....E.TGY.#..
00000040: 2dd6 3b93 6919 3ee8 691b 8fba b758 5b47  -.;.i.>.i....X[G
00000050: 236b 6cfc 380b 1a3d 26c0 b278 de04 0845  #kl.8..=&..x...E
00000060: 85f7 c222 fdb0 288b f19d 4344 5a7b f503  ..."..(...CDZ{..
00000070: 6ada e011 1533 69f0 41f4 fdc8 64e8 be8d  j....3i.A...d...
00000080: e02a 0026 6c5d 3a83 7f70 2f1b ab88 8ca7  .*.&l]:..p/.....
00000090: 5fa8 e36a b64d 1425 f73a ee0c aab9 eb1a  _..j.M.%.:......
000000a0: 3b5f 1282 c9ba 9401 8c62 58b4 b5c7 6e24  ;_.......bX...n$
000000b0: 6d1c d7c4 aa7f c626 7e44 d569 8a21 c7d6  m......&~D.i.!..
000000c0: df65 d78f 1157 b495 4ea5 7b28 77ab 4035  .e...W..N.{(w.@5
000000d0: 9d45 561b fdae 9869 e34b d44c ea45 6b31  .EV....i.K.L.Ek1
000000e0: 46c7 63f1 ecfc bd03 645a 4f24 645a a4f6  F.c.....dZO$dZ..
000000f0: 1a56 ceab 7b33 ade1 3202 681b d19f a088  .V..{3..2.h.....
00000100: 1f7a 4b97 1c7d 9952 d1b5 21dc 571c d9dc  .zK..}.R..!.W...
00000110: 2702 a204 a254 f665 08e2 ed0a d451 c2a7  '....T.e.....Q..
00000120: 6344 df39 5c65 98f3 7092 d537 2bc3 897e  cD.9\e..p..7+..~
00000130: 25ac 9a34 7a17 b324 17fb 5238 64d9 79e6  %..4z..$..R8d.y.
00000140: cc94 a475 edbc 3675 6372 45d2 01ec c9ae  ...u..6ucrE.....
00000150: e44c 403c d1da 5eec 841e 6d73 acfd 6d6e  .L@<..^...ms..mn
00000160: 3f8d 94cb 4e39 507c 995a 4f3d ac94 9da8  ?...N9P|.ZO=....
00000170: afa5 cb13 2378 3994 da2d 0a2e 5a35 b754  ....#x9..-..Z5.T
00000180: 0943 9a0b 2b92 d151 1a6a 77a6 9c96 abb3  .C..+..Q.jw.....
00000190: ffc1 07                                  ...

온라인으로 사용해보십시오!

당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.