반사 진화 알고리즘


10

함수를 구현하여 프로그램을 작성해야합니다 digitsum(int i). 프로그램은 자체 코드를 수정해야합니다 (언어의 경우 fe 반영으로 는 불가능합니다) 목표를 해결하기 위해 자체 경우 창의력을 발휘하십시오).

당신은 시작

function digitsum(int i){
    return i;
}

유효한 손가락을 반환 할 때까지 위의 함수를 수정 하는 진화 알고리즘 을 구현하십시오.함수 호출시 를 하십시오.

이것은 인기 콘테스트이므로, 당신은 매우 많은 무료 핸즈를 가지고 있습니다, 창의력을 발휘하십시오!

지침 :

  • 정의 된 기능으로 시작하십시오 (물론 언어로 번역됨).
  • 각 세대에서 가장 적합한 기능을 인쇄하십시오.
  • 0 <i <10000에 대해 테스트 된 작업 솔루션을 인쇄하십시오.
  • 창의력을 발휘하십시오!

하지 마라:

  • 프로그램을 솔루션에 알려주십시오. 모든 언어 옵션을 사용하십시오!
  • 콘솔에 오류를 던지십시오.
  • 외부 입력을 사용하십시오. 프로그램에서 작성한 파일을 작성하고 저장할 수 있습니다. 인터넷이 없습니다.

가장 많은 찬사를받은 유효한 솔루션이 승리합니다!


합니까는 no libraries더 libc의 의미도 허용?
mniip

나는 no libraries복잡한 imo와 마찬가지로를 제거 했으므로 유권자는 사용 된 많은 라이브러리가 있는지 여부를 결정할 수 있습니다!
reggaemuffin

7
+1 어려운 흥미로운 질문. 답을 얻으려면 몇 시간이 필요합니다. 불행히도 2 ~ 3 개 이상의 답변을 기대하지 마십시오.
Victor Stafusa 14

궁금해 이것과 재귀 함수의 차이점은 무엇입니까? 시나리오 가 지연되어 xD가 느낀다 는 것을 시각화 할 수 없기 때문에 잘 알 수 없습니다.
Teun Pronk

1
"모든 언어 옵션을 사용하십시오!" 중요한 파일을 삭제하는 프로그램의 위험을 명시 적으로 요청하는 것 같습니다.
피터 테일러

답변:


3

씨#

거의 완전하고 무작위적인 조립 솔루션. C # 및 기타 다른 플랫폼의 경우 가능한 한 낮은 수준입니다. 운 좋게도 C #을 사용하면 IL에서 런타임 중에 메소드를 정의 할 수 있습니다 (IL은 어셈블리와 유사한 중간 언어, .NET의 바이트 코드입니다). 이 코드의 유일한 한계는 완벽한 솔루션에 필요한 임의의 분포를 가진 일부 수백 개의 코드를 선택한다는 것입니다. 우리가 모든 opcode를 허용한다면, 작동하는 프로그램의 가능성은 거의 없기 때문에 이것이 필요합니다 (상상할 수 있듯이, 임의의 어셈블리 명령이 충돌 할 수있는 많은 방법이 있지만 운 좋게도 전체 프로그램을 다운 시키지는 않습니다 .NET에서). 가능한 opcode의 범위 이외에, 그것은 어떤 종류의 암시없이 완전히 임의의 슬라이싱 및 dicing IL opcode입니다.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
using System.Reflection.Emit;
using System.Diagnostics;
using System.Threading;

namespace codegolf
{
    class Program
    {
        // decompile this into IL to find out the opcodes needed for the perfect algo
        static int digitsumbest(int i)
        {
            var ret = 0;
            while (i > 0)
            {
                ret += i % 10;
                i /= 10;
            }
            return ret;
        }

        delegate int digitsumdelegate(int num);

        static Thread bgthread;

        // actually runs the generated code for one index
        // it is invoked in a background thread, which we save so that it can be aborted in case of an infinite loop
        static int run(digitsumdelegate del, int num)
        {
            bgthread = Thread.CurrentThread;
            try
            {
                return del(num);
            }
            catch (ThreadAbortException)
            {
                bgthread = null;
                throw;
            }
        }

        // evaluates a generated code for some inputs and calculates an error level
        // also supports a full run with logging
        static long evaluate(digitsumdelegate del, TextWriter sw)
        {
            var error = 0L;

            List<int> numbers;
            if (sw == null) // quick evaluation
                numbers = Enumerable.Range(1, 30).Concat(Enumerable.Range(1, 70).Select(x => 5000 + x * 31)).ToList();
            else // full run
                numbers = Enumerable.Range(1, 9999).ToList();

            foreach (var num in numbers)
            {
                try
                {
                    Func<digitsumdelegate, int, int> f = run;
                    bgthread = null;
                    var iar = f.BeginInvoke(del, num, null, null);
                    if (!iar.AsyncWaitHandle.WaitOne(10))
                    {
                        bgthread.Abort();
                        while (bgthread != null) ;
                        throw new Exception("timeout");
                    }
                    var result = f.EndInvoke(iar);
                    if (sw != null)
                        sw.WriteLine("{0};{1};{2};", num, digitsumbest(num), result);
                    var diff = result == 0 ? 15 : (result - digitsumbest(num));
                    if (diff > 50 || diff < -50)
                        diff = 50;
                    error += diff * diff;
                }
                catch (InvalidProgramException)
                {
                    // invalid IL code, happens a lot, so let's make a shortcut
                    if (sw != null)
                        sw.WriteLine("invalid program");
                    return numbers.Count * (50 * 50) + 1;
                }
                catch (Exception ex)
                {
                    if (sw != null)
                        sw.WriteLine("{0};{1};;{2}", num, digitsumbest(num), ex.Message);
                    error += 50 * 50;
                }
            }
            return error;
        }

        // generates code from the given byte array
        static digitsumdelegate emit(byte[] ops)
        {
            var dm = new DynamicMethod("w", typeof(int), new[] { typeof(int) });
            var ilg = dm.GetILGenerator();
            var loc = ilg.DeclareLocal(typeof(int));

            // to support jumping anywhere, we will assign a label to every single opcode
            var labels = Enumerable.Range(0, ops.Length).Select(x => ilg.DefineLabel()).ToArray();

            for (var i = 0; i < ops.Length; i++)
            {
                ilg.MarkLabel(labels[i]);

                // 3 types of jumps with 23 distribution each, 11 types of other opcodes with 17 distribution each = all 256 possibilities
                // the opcodes were chosen based on the hand-coded working solution
                var c = ops[i];
                if (c < 23)
                    ilg.Emit(OpCodes.Br_S, labels[(i + 1 + c) % labels.Length]);
                else if (c < 46)
                    ilg.Emit(OpCodes.Bgt_S, labels[(i + 1 + c - 23) % labels.Length]);
                else if (c < 69)
                    ilg.Emit(OpCodes.Bge_S, labels[(i + 1 + c - 46) % labels.Length]);
                else if (c < 86)
                    ilg.Emit(OpCodes.Ldc_I4, c - 70); // stack: +1
                else if (c < 103)
                    ilg.Emit(OpCodes.Dup); // stack: +1
                else if (c < 120)
                    ilg.Emit(OpCodes.Ldarg_0); // stack: +1
                else if (c < 137)
                    ilg.Emit(OpCodes.Starg_S, 0); // stack: -1
                else if (c < 154)
                    ilg.Emit(OpCodes.Ldloc, loc); // stack: +1
                else if (c < 171)
                    ilg.Emit(OpCodes.Stloc, loc); // stack: -1
                else if (c < 188)
                    ilg.Emit(OpCodes.Mul); // stack: -1
                else if (c < 205)
                    ilg.Emit(OpCodes.Div); // stack: -1
                else if (c < 222)
                    ilg.Emit(OpCodes.Rem); // stack: -1
                else if (c < 239)
                    ilg.Emit(OpCodes.Add); // stack: -1
                else
                    ilg.Emit(OpCodes.Sub); // stack: -1
            }

            ilg.Emit(OpCodes.Ret);
            return (digitsumdelegate)dm.CreateDelegate(typeof(digitsumdelegate));
        }

        static void Main(string[] args)
        {
            System.Diagnostics.Process.GetCurrentProcess().PriorityClass = ProcessPriorityClass.Idle;

            var rnd = new Random();

            // the first list is just 10 small random ones
            var best = new List<byte[]>();
            for (var i = 0; i < 10; i++)
            {
                var initial = new byte[5];
                for (var j = 0; j < initial.Length; j++)
                    initial[j] = (byte)rnd.Next(256);
                best.Add(initial);
            }

            // load the best result from the previous run, if it exists
            if (File.Exists("best.txt"))
                best[0] = File.ReadAllLines("best.txt").Select(x => byte.Parse(x)).ToArray();

            var stop = false;

            // handle nice stopping with ctrl-c
            Console.CancelKeyPress += (s, e) =>
            {
                stop = true;
                e.Cancel = true;
            };

            while (!stop)
            {
                var candidates = new List<byte[]>();

                // leave the 10 best arrays, plus generate 9 consecutive mutations for each of them = 100 candidates
                for (var i = 0; i < 10; i++)
                {
                    var s = best[i];
                    candidates.Add(s);
                    for (var j = 0; j < 9; j++)
                    {
                        // the optimal solution is about 20 opcodes, we keep the program length between 15 and 40
                        switch (rnd.Next(s.Length >= 40 ? 2 : 0, s.Length <= 15 ? 3 : 5))
                        {
                            case 0: // insert
                            case 1:
                                var c = new byte[s.Length + 1];
                                var idx = rnd.Next(0, s.Length);
                                Array.Copy(s, 0, c, 0, idx);
                                c[idx] = (byte)rnd.Next(256);
                                Array.Copy(s, idx, c, idx + 1, s.Length - idx);
                                candidates.Add(c);
                                s = c;
                                break;
                            case 2: // change
                                c = (byte[])s.Clone();
                                idx = rnd.Next(0, s.Length);
                                c[idx] = (byte)rnd.Next(256);
                                candidates.Add(c);
                                s = c;
                                break;
                            case 3: // remove
                            case 4: // remove
                                c = new byte[s.Length - 1];
                                idx = rnd.Next(0, s.Length);
                                Array.Copy(s, 0, c, 0, idx);
                                Array.Copy(s, idx + 1, c, idx, s.Length - idx - 1);
                                candidates.Add(c);
                                s = c;
                                break;
                        }
                    }
                }

                // score the candidates and select the best 10
                var scores = Enumerable.Range(0, 100).ToDictionary(i => i, i => evaluate(emit(candidates[i]), null));
                var bestidxes = scores.OrderBy(x => x.Value).Take(10).Select(x => x.Key).ToList();
                Console.WriteLine("best score so far: {0}", scores[bestidxes[0]]);
                best = bestidxes.Select(i => candidates[i]).ToList();
            }

            // output the code of the best solution
            using (var sw = new StreamWriter("best.txt"))
            {
                foreach (var b in best[0])
                    sw.WriteLine(b);
            }

            // create a CSV file with the best solution
            using (var sw = new StreamWriter("best.csv"))
            {
                sw.WriteLine("index;actual;generated;error");
                evaluate(emit(best[0]), sw);
            }
        }
    }
}

죄송합니다. 1..99 (1.9999 대신)를 테스트해도 속도가 느리고 너무 피곤하기 때문에 지금까지 결과가 없습니다. 내일 다시 연락 드리겠습니다.

편집 : 프로그램을 완료하고 많이 조정했습니다. 이제 CTRL-C를 누르면 현재 실행이 완료되고 결과가 파일로 출력됩니다. 현재, 실행 가능한 유일한 솔루션은 항상 상수를 반환하는 프로그램입니다. 고급 작업 프로그램의 가능성은 천문학적으로 작다고 생각하기 시작했습니다. 어쨌든 나는 그것을 잠시 동안 계속 유지할 것입니다.

편집 : 알고리즘을 계속 조정하면 나와 같은 괴짜에게 완벽한 장난감입니다. 나는 한 번 임의의 수학을 수행하고 항상 상수를 반환하지는 않는 생성 된 프로그램을 보았다. 한 번에 수백만 개의 CPU에서 실행하는 것이 좋습니다. :). 계속 실행하겠습니다.

편집 : 다음은 완전히 임의의 수학 결과입니다. 나머지 지수의 경우 17 세를 유지합니다. 그것은 곧 의식이되지 않습니다.

편집 : 점점 복잡해지고 있습니다. 물론, 예상 한 것처럼 적절한 Digium 알고리즘처럼 보이지는 않지만 열심히 노력하고 있습니다. 봐, 컴퓨터 생성 어셈블리 프로그램!


매우 멋져요! 내일 코드를 볼게요!
reggaemuffin

나는 실제로 비슷한 접근법을 시도했으며 좋은 평가 기능으로 열심히 싸우고 있습니다. 또한 로컬 최대 값에 갇혀 있습니다 (솔루션 계수 연산을 사용하여 1..19에 올바르게 반환되는 솔루션에 갇혀 있음). 어쨌든 당신을 위해! 추신 : 지역 최대치를 벗어나기 위해 때때로 급진적 인 돌연변이를 도입하려고 시도하고 잠시 동안 다른 우주에 의해 즉시 격추되지 않도록 잠시 동안 (별도의 우주에서) 개발하도록하십시오. 아프리카에서 표류하고 다른 종을 개발하는 남미 같은 종류 ;-)
blabla999

3

씨#

이것은 당신이 구상 한 것이 완전하지 않을 수도 있지만, 이것이 내가 지금 할 수있는 최선입니다. (적어도 C # 및 CodeDom에서는).

작동 방식 :

  1. Digiumum Base 2를 계산합니다. (베이스는 명령문에 지정되지 않았습니다)
  2. 다음과 같은 용어가 많은 표현식을 생성하려고 시도합니다. ((i & v1) >> v2) . 이러한 용어는 실행을 통해 돌연변이되는 유전자가 될 것입니다.
  3. 피트니스 함수는 단순히 값을 미리 계산 된 배열과 비교하고 차이의 절대 값의 합을 사용합니다. 이는 0 값은 솔루션에 도달했음을 의미하며, 값은 솔루션에 적합합니다.

코드:

using System;
using System.CodeDom;
using System.CodeDom.Compiler;
using Microsoft.CSharp;
using System.IO;
using System.Reflection;
using System.Collections.Generic;
using System.Linq;

namespace Evol
{
    class MainClass
    {
        const int BASE = 2;
        static int[] correctValues;
        static List<Evolution> values = new List<Evolution>();

        public static CodeCompileUnit generateCompileUnit(CodeStatementCollection statements) {
            CodeCompileUnit compileUnit = new CodeCompileUnit();
            CodeNamespace samples = new CodeNamespace("CodeGolf");
            compileUnit.Namespaces.Add(samples);
            samples.Imports.Add(new CodeNamespaceImport("System"));
            CodeTypeDeclaration digitSumClass = new CodeTypeDeclaration("DigitSum");
            samples.Types.Add(digitSumClass);
            CodeMemberMethod method = new CodeMemberMethod();
            method.Name = "digitsum";
            method.Attributes = MemberAttributes.Public | MemberAttributes.Static;
            method.ReturnType = new CodeTypeReference (typeof(int));
            method.Parameters.Add (new CodeParameterDeclarationExpression (typeof(int), "i"));
            method.Statements.AddRange (statements);
            digitSumClass.Members.Add(method);
            return compileUnit;
        }

        public static long CompileAndInvoke(CodeStatementCollection statements, bool printCode) {
            CompilerParameters cp = new CompilerParameters();
            cp.ReferencedAssemblies.Add( "System.dll" );
            cp.GenerateInMemory = true;
            CodeGeneratorOptions cgo = new CodeGeneratorOptions ();
            CodeDomProvider cpd = new CSharpCodeProvider ();
            CodeCompileUnit cu = generateCompileUnit (statements);
            StringWriter sw = new StringWriter();
            cpd.GenerateCodeFromCompileUnit(cu, sw, cgo);
            if (printCode) {
                System.Console.WriteLine (sw.ToString ());
            }

            var result = cpd.CompileAssemblyFromDom (cp, cu);

            if (result.Errors.Count != 0) {
                return -1;
            } else {
                var assembly = result.CompiledAssembly;
                var type = assembly.GetType ("CodeGolf.DigitSum");
                var method = type.GetMethod ("digitsum");
                long fitness = CalcFitness (method);
                return fitness;
            }
        }

        public static long CalcFitness(MethodInfo method) {
            long result = 0;
            for (int i = 0; i < correctValues.Length; i++) {
                int r = (int)method.Invoke (null, new Object[] { i });
                result += Math.Abs (r - correctValues[i]);
            }
            return result;
        }

        public static CodeStatementCollection generateCodeDomFromString (Term[] terms) {
            CodeStatementCollection statements = new CodeStatementCollection ();
            CodeExpression expression = null;
            foreach (Term term in terms) {
                CodeExpression inner = new CodeArgumentReferenceExpression ("i");
                if (term.and.HasValue) {
                    inner = new CodeBinaryOperatorExpression (inner, CodeBinaryOperatorType.BitwiseAnd, new CodePrimitiveExpression(term.and.Value));
                }
                if (term.shift.HasValue) {
                    inner = new CodeBinaryOperatorExpression (inner, CodeBinaryOperatorType.Divide, new CodePrimitiveExpression(Math.Pow (2, term.shift.Value)));
                }
                if (expression == null) {
                    expression = inner;
                } else {
                    expression = new CodeBinaryOperatorExpression (expression, CodeBinaryOperatorType.Add, inner);
                }
            }
            statements.Add (new CodeMethodReturnStatement (expression));
            return statements;
        }


        public static void Main (string[] args)
        {
            correctValues = new int[10001];
            for (int i = 0; i < correctValues.Length; i++) {
                int result = 0;
                int num = i;
                while (num != 0) {
                    result += num % BASE;
                    num /= BASE;
                }
                correctValues [i] = result;
            }
            values.Add (new Evolution (new Term[] { new Term (null, null) }));
            Random rnd = new Random ();
            while (true) {
                // run old generation
                foreach (var val in values) {
                    CodeStatementCollection stat = generateCodeDomFromString (val.term);
                    long fitness = CompileAndInvoke (stat, false);
                    val.score = fitness;
                    System.Console.WriteLine ("Fitness: {0}", fitness);
                }
                Evolution best = values.Aggregate ((i1, i2) => i1.score < i2.score ? i1 : i2);
                CodeStatementCollection bestcoll = generateCodeDomFromString (best.term);
                CompileAndInvoke (bestcoll, true);
                System.Console.WriteLine ("Best fitness for this run: {0}", best.score);

                if (best.score == 0)
                    break;

                // generate new generation
                List<Evolution> top = values.OrderBy (i => i.score).Take (3).ToList();
                values = new List<Evolution> ();
                foreach (var e in top) {
                    values.Add (e);
                    if (e.term.Length < 16) {
                        Term[] newTerm = new Term[e.term.Length + 1];
                        for (int i = 0; i < e.term.Length; i++) {
                            newTerm [i] = e.term [i];
                        }
                        int rrr = rnd.Next (0, 17);
                        newTerm [e.term.Length] = new Term ((int)Math.Pow(2,rrr), rrr);
                        values.Add (new Evolution (newTerm));
                    }
                    {
                        int r = rnd.Next (0, e.term.Length);
                        Term[] newTerm = (Term[])e.term.Clone ();
                        int rrr = rnd.Next (0, 17);
                        newTerm [r] = new Term ((int)Math.Pow(2,rrr), rrr);
                        values.Add (new Evolution (newTerm));
                    }
                }
            }
        }

        public struct Term {
            public int? and;
            public int? shift;

            public Term(int? and, int? shift) {
                if (and!=0) {
                    this.and = and;
                } else this.and = null;
                if (shift!=0) {
                    this.shift = shift;
                } else this.shift=null;
            }
        }

        public class Evolution {
            public Term[] term;
            public long score;

            public Evolution(Term[] term) {
                this.term = term;
            }
        }
    }
}

Mono C # 컴파일러 버전 3.2.6.0을 사용하여 OSX에서 테스트되었습니다.

각 반복에서 현재 계산의 적합성 값을 인쇄합니다. 마지막에는 피트니스와 함께 최상의 솔루션을 인쇄합니다. 루프는 결과 중 하나의 피트니스 값이 0이 될 때까지 실행됩니다.

이것이 시작되는 방법입니다.

// ------------------------------------------------------------------------------
//  <autogenerated>
//      This code was generated by a tool.
//      Mono Runtime Version: 4.0.30319.17020
// 
//      Changes to this file may cause incorrect behavior and will be lost if 
//      the code is regenerated.
//  </autogenerated>
// ------------------------------------------------------------------------------

namespace CodeGolf {
    using System;


    public class DigitSum {

        public static int digitsum(int i) {
            return i;
        }
    }
}

Best fitness for this run: 49940387

그리고 잠시 후 (약 30 분 소요), 이것이 끝나는 방식입니다 (마지막 및 거의 마지막 반복 표시).

// ------------------------------------------------------------------------------
//  <autogenerated>
//      This code was generated by a tool.
//      Mono Runtime Version: 4.0.30319.17020
// 
//      Changes to this file may cause incorrect behavior and will be lost if 
//      the code is regenerated.
//  </autogenerated>
// ------------------------------------------------------------------------------

namespace CodeGolf {
    using System;


    public class DigitSum {

        public static int digitsum(int i) {
            return ((((((((((((((((i & 4096) / 4096) + ((i & 16) / 16)) + ((i & 32) / 32)) + ((i & 128) / 128)) + ((i & 65536) / 65536)) + ((i & 1024) / 1024)) + ((i & 8) / 8)) + ((i & 2) / 2)) + ((i & 512) / 512)) + ((i & 4) / 4)) + (i & 1)) + ((i & 256) / 256)) + ((i & 128) / 128)) + ((i & 8192) / 8192)) + ((i & 2048) / 2048));
        }
    }
}

Best fitness for this run: 4992
Fitness: 4992
Fitness: 7040
Fitness: 4993
Fitness: 4992
Fitness: 0
Fitness: 4992
Fitness: 4992
Fitness: 7496
// ------------------------------------------------------------------------------
//  <autogenerated>
//      This code was generated by a tool.
//      Mono Runtime Version: 4.0.30319.17020
// 
//      Changes to this file may cause incorrect behavior and will be lost if 
//      the code is regenerated.
//  </autogenerated>
// ------------------------------------------------------------------------------

namespace CodeGolf {
    using System;


    public class DigitSum {

        public static int digitsum(int i) {
            return (((((((((((((((((i & 4096) / 4096) + ((i & 16) / 16)) + ((i & 32) / 32)) + ((i & 64) / 64)) + ((i & 32768) / 32768)) + ((i & 1024) / 1024)) + ((i & 8) / 8)) + ((i & 2) / 2)) + ((i & 512) / 512)) + ((i & 4) / 4)) + (i & 1)) + ((i & 256) / 256)) + ((i & 128) / 128)) + ((i & 8192) / 8192)) + ((i & 2048) / 2048)) + ((i & 32768) / 32768));
        }
    }
}

Best fitness for this run: 0

노트:

  1. CodeDOM은 왼쪽 시프트 연산자를 지원하지 않으므로 대신 a >> b사용하고 있습니다.a / 2^b
  2. 초기 반복은 return i;문제가 요구 하는 대로입니다.
  3. 처음 몇 번의 반복에서는 합계에 새로운 용어 (유전자)를 추가하는 것이 우선 순위가 부여됩니다. 나중에 무작위로 값을 변경 (돌연변이)하는 것이 더 중요합니다.
  4. i & a >> a대신에 비슷한 용어를 생성 하고 있습니다i & a >> b후자의 경우 진화가 너무 느려 실용적이지 않기 때문에 하고 있습니다.
  5. 또한 솔루션이 양식에서 답변을 찾는 것으로 제한되는 이유이기도합니다. return (i&a>>b)+(i&c>>d)+... 루프, 할당, 조건 확인 등을 사용하여 "적절한"코드를 생성하는 등의 다른 종류가 너무 느리게 수렴 도 있습니다. 또한이 방법으로 유전자 (각 용어)를 정의하는 것은 매우 쉽고, 돌연변이시키는 것은 매우 쉽습니다.
  6. 이것은 또한 2 자릿수에 숫자를 추가하는 이유이기도합니다 (문제 설명에베이스가 지정되지 않았으므로 이것을 잘 고려하십시오). 기본 10 솔루션은 느리게 진행되었을뿐만 아니라 실제 유전자를 정의하기가 실제로 어려웠을 것입니다. 루프를 추가하면 실행중인 코드를 관리하고 잠재적으로 무한 루프에 들어가기 전에 종료 할 수있는 방법을 찾아야합니다.
  7. 유전자는 단지 돌연변이되고,이 용액에는 교차가 없다. 나는 그것을 추가하는 것이 진화 과정을 가속화 시킬지 여부를 모른다.
  8. 이 솔루션은 숫자에 대해서만 테스트됩니다 0..10000 (발견 된 솔루션을 확인하면 16384보다 큰 숫자에서는 작동하지 않음을 알 수 있습니다)
  9. 이 요지에서 전체 진화 과정을 확인할 수 있습니다.

3

자바 스크립트

글쎄, 내 대답에 약간의 부동 소수점 정밀도 문제가 있습니다 55. 입력 숫자가보다 클 때 BigDecimal 라이브러리를 사용하여 해결할 수 있습니다 .
그렇습니다. 10000그래서 이길 수는 없지만 이 주제를 기반으로 한 흥미로운 방법을 기대합니다 . 포인트 집합을 기반으로
[다항식 보간] ( http://en.wikipedia.org/wiki/Polynomial_interpolation )을 계산 하므로 모듈로 또는 비트 연산자없이 곱셈, 나눗셈 및 덧셈 만 사용합니다.

//used to compute real values
function correct(i) {
  var s = i.toString();
  var o=0;
  for (var i=0; i<s.length; i++) {
    o+=parseInt(s[i]);
  }
  return o;
}

function digitsum(i){return i}
//can be replaced by anything like :
//function digitsum(i){return (Math.sin(i*i)+2*Math.sqrt(i)))}

for (var j=0; j<60; j++) {
  var p = correct(j+1)-digitsum(j+1);
  if (p != 0) {
    var g='Math.round(1';
    for (var k=0; k<j+1; k++) {
      g+='*((i-'+k+')/'+(j+1-k)+')';
    }
    g+=')';
    eval(digitsum.toString().replace(/{return (.*)}/, function (m,v) {
      return "{return "+v+"+"+p+"*"+g+"}";
    }));
  }
}

console.log(digitsum);

출력 기능 :

function digitsum(i){return i+-9*Math.round(1*((i-0)/10)*((i-1)/9)*((i-2)/8)*((i-3)/7)*((i-4)/6)*((i-5)/5)*((i-6)/4)*((i-7)/3)*((i-8)/2)*((i-9)/1))+90*Math.round(1*((i-0)/11)*((i-1)/10)*((i-2)/9)*((i-3)/8)*((i-4)/7)*((i-5)/6)*((i-6)/5)*((i-7)/4)*((i-8)/3)*((i-9)/2)*((i-10)/1))+-495*Math.round(1*((i-0)/12)*((i-1)/11)*((i-2)/10)*((i-3)/9)*((i-4)/8)*((i-5)/7)*((i-6)/6)*((i-7)/5)*((i-8)/4)*((i-9)/3)*((i-10)/2)*((i-11)/1))+1980*Math.round(1*((i-0)/13)*((i-1)/12)*((i-2)/11)*((i-3)/10)*((i-4)/9)*((i-5)/8)*((i-6)/7)*((i-7)/6)*((i-8)/5)*((i-9)/4)*((i-10)/3)*((i-11)/2)*((i-12)/1))+-6435*Math.round(1*((i-0)/14)*((i-1)/13)*((i-2)/12)*((i-3)/11)*((i-4)/10)*((i-5)/9)*((i-6)/8)*((i-7)/7)*((i-8)/6)*((i-9)/5)*((i-10)/4)*((i-11)/3)*((i-12)/2)*((i-13)/1))+18018*Math.round(1*((i-0)/15)*((i-1)/14)*((i-2)/13)*((i-3)/12)*((i-4)/11)*((i-5)/10)*((i-6)/9)*((i-7)/8)*((i-8)/7)*((i-9)/6)*((i-10)/5)*((i-11)/4)*((i-12)/3)*((i-13)/2)*((i-14)/1))+-45045*Math.round(1*((i-0)/16)*((i-1)/15)*((i-2)/14)*((i-3)/13)*((i-4)/12)*((i-5)/11)*((i-6)/10)*((i-7)/9)*((i-8)/8)*((i-9)/7)*((i-10)/6)*((i-11)/5)*((i-12)/4)*((i-13)/3)*((i-14)/2)*((i-15)/1))+102960*Math.round(1*((i-0)/17)*((i-1)/16)*((i-2)/15)*((i-3)/14)*((i-4)/13)*((i-5)/12)*((i-6)/11)*((i-7)/10)*((i-8)/9)*((i-9)/8)*((i-10)/7)*((i-11)/6)*((i-12)/5)*((i-13)/4)*((i-14)/3)*((i-15)/2)*((i-16)/1))+-218790*Math.round(1*((i-0)/18)*((i-1)/17)*((i-2)/16)*((i-3)/15)*((i-4)/14)*((i-5)/13)*((i-6)/12)*((i-7)/11)*((i-8)/10)*((i-9)/9)*((i-10)/8)*((i-11)/7)*((i-12)/6)*((i-13)/5)*((i-14)/4)*((i-15)/3)*((i-16)/2)*((i-17)/1))+437580*Math.round(1*((i-0)/19)*((i-1)/18)*((i-2)/17)*((i-3)/16)*((i-4)/15)*((i-5)/14)*((i-6)/13)*((i-7)/12)*((i-8)/11)*((i-9)/10)*((i-10)/9)*((i-11)/8)*((i-12)/7)*((i-13)/6)*((i-14)/5)*((i-15)/4)*((i-16)/3)*((i-17)/2)*((i-18)/1))+-831411*Math.round(1*((i-0)/20)*((i-1)/19)*((i-2)/18)*((i-3)/17)*((i-4)/16)*((i-5)/15)*((i-6)/14)*((i-7)/13)*((i-8)/12)*((i-9)/11)*((i-10)/10)*((i-11)/9)*((i-12)/8)*((i-13)/7)*((i-14)/6)*((i-15)/5)*((i-16)/4)*((i-17)/3)*((i-18)/2)*((i-19)/1))+1511820*Math.round(1*((i-0)/21)*((i-1)/20)*((i-2)/19)*((i-3)/18)*((i-4)/17)*((i-5)/16)*((i-6)/15)*((i-7)/14)*((i-8)/13)*((i-9)/12)*((i-10)/11)*((i-11)/10)*((i-12)/9)*((i-13)/8)*((i-14)/7)*((i-15)/6)*((i-16)/5)*((i-17)/4)*((i-18)/3)*((i-19)/2)*((i-20)/1))+-2647260*Math.round(1*((i-0)/22)*((i-1)/21)*((i-2)/20)*((i-3)/19)*((i-4)/18)*((i-5)/17)*((i-6)/16)*((i-7)/15)*((i-8)/14)*((i-9)/13)*((i-10)/12)*((i-11)/11)*((i-12)/10)*((i-13)/9)*((i-14)/8)*((i-15)/7)*((i-16)/6)*((i-17)/5)*((i-18)/4)*((i-19)/3)*((i-20)/2)*((i-21)/1))+4490640*Math.round(1*((i-0)/23)*((i-1)/22)*((i-2)/21)*((i-3)/20)*((i-4)/19)*((i-5)/18)*((i-6)/17)*((i-7)/16)*((i-8)/15)*((i-9)/14)*((i-10)/13)*((i-11)/12)*((i-12)/11)*((i-13)/10)*((i-14)/9)*((i-15)/8)*((i-16)/7)*((i-17)/6)*((i-18)/5)*((i-19)/4)*((i-20)/3)*((i-21)/2)*((i-22)/1))+-7434405*Math.round(1*((i-0)/24)*((i-1)/23)*((i-2)/22)*((i-3)/21)*((i-4)/20)*((i-5)/19)*((i-6)/18)*((i-7)/17)*((i-8)/16)*((i-9)/15)*((i-10)/14)*((i-11)/13)*((i-12)/12)*((i-13)/11)*((i-14)/10)*((i-15)/9)*((i-16)/8)*((i-17)/7)*((i-18)/6)*((i-19)/5)*((i-20)/4)*((i-21)/3)*((i-22)/2)*((i-23)/1))+12150072*Math.round(1*((i-0)/25)*((i-1)/24)*((i-2)/23)*((i-3)/22)*((i-4)/21)*((i-5)/20)*((i-6)/19)*((i-7)/18)*((i-8)/17)*((i-9)/16)*((i-10)/15)*((i-11)/14)*((i-12)/13)*((i-13)/12)*((i-14)/11)*((i-15)/10)*((i-16)/9)*((i-17)/8)*((i-18)/7)*((i-19)/6)*((i-20)/5)*((i-21)/4)*((i-22)/3)*((i-23)/2)*((i-24)/1))+-19980675*Math.round(1*((i-0)/26)*((i-1)/25)*((i-2)/24)*((i-3)/23)*((i-4)/22)*((i-5)/21)*((i-6)/20)*((i-7)/19)*((i-8)/18)*((i-9)/17)*((i-10)/16)*((i-11)/15)*((i-12)/14)*((i-13)/13)*((i-14)/12)*((i-15)/11)*((i-16)/10)*((i-17)/9)*((i-18)/8)*((i-19)/7)*((i-20)/6)*((i-21)/5)*((i-22)/4)*((i-23)/3)*((i-24)/2)*((i-25)/1))+34041150*Math.round(1*((i-0)/27)*((i-1)/26)*((i-2)/25)*((i-3)/24)*((i-4)/23)*((i-5)/22)*((i-6)/21)*((i-7)/20)*((i-8)/19)*((i-9)/18)*((i-10)/17)*((i-11)/16)*((i-12)/15)*((i-13)/14)*((i-14)/13)*((i-15)/12)*((i-16)/11)*((i-17)/10)*((i-18)/9)*((i-19)/8)*((i-20)/7)*((i-21)/6)*((i-22)/5)*((i-23)/4)*((i-24)/3)*((i-25)/2)*((i-26)/1))+-62162100*Math.round(1*((i-0)/28)*((i-1)/27)*((i-2)/26)*((i-3)/25)*((i-4)/24)*((i-5)/23)*((i-6)/22)*((i-7)/21)*((i-8)/20)*((i-9)/19)*((i-10)/18)*((i-11)/17)*((i-12)/16)*((i-13)/15)*((i-14)/14)*((i-15)/13)*((i-16)/12)*((i-17)/11)*((i-18)/10)*((i-19)/9)*((i-20)/8)*((i-21)/7)*((i-22)/6)*((i-23)/5)*((i-24)/4)*((i-25)/3)*((i-26)/2)*((i-27)/1))+124324200*Math.round(1*((i-0)/29)*((i-1)/28)*((i-2)/27)*((i-3)/26)*((i-4)/25)*((i-5)/24)*((i-6)/23)*((i-7)/22)*((i-8)/21)*((i-9)/20)*((i-10)/19)*((i-11)/18)*((i-12)/17)*((i-13)/16)*((i-14)/15)*((i-15)/14)*((i-16)/13)*((i-17)/12)*((i-18)/11)*((i-19)/10)*((i-20)/9)*((i-21)/8)*((i-22)/7)*((i-23)/6)*((i-24)/5)*((i-25)/4)*((i-26)/3)*((i-27)/2)*((i-28)/1))+-270405144*Math.round(1*((i-0)/30)*((i-1)/29)*((i-2)/28)*((i-3)/27)*((i-4)/26)*((i-5)/25)*((i-6)/24)*((i-7)/23)*((i-8)/22)*((i-9)/21)*((i-10)/20)*((i-11)/19)*((i-12)/18)*((i-13)/17)*((i-14)/16)*((i-15)/15)*((i-16)/14)*((i-17)/13)*((i-18)/12)*((i-19)/11)*((i-20)/10)*((i-21)/9)*((i-22)/8)*((i-23)/7)*((i-24)/6)*((i-25)/5)*((i-26)/4)*((i-27)/3)*((i-28)/2)*((i-29)/1))+620410320*Math.round(1*((i-0)/31)*((i-1)/30)*((i-2)/29)*((i-3)/28)*((i-4)/27)*((i-5)/26)*((i-6)/25)*((i-7)/24)*((i-8)/23)*((i-9)/22)*((i-10)/21)*((i-11)/20)*((i-12)/19)*((i-13)/18)*((i-14)/17)*((i-15)/16)*((i-16)/15)*((i-17)/14)*((i-18)/13)*((i-19)/12)*((i-20)/11)*((i-21)/10)*((i-22)/9)*((i-23)/8)*((i-24)/7)*((i-25)/6)*((i-26)/5)*((i-27)/4)*((i-28)/3)*((i-29)/2)*((i-30)/1))+-1451529585*Math.round(1*((i-0)/32)*((i-1)/31)*((i-2)/30)*((i-3)/29)*((i-4)/28)*((i-5)/27)*((i-6)/26)*((i-7)/25)*((i-8)/24)*((i-9)/23)*((i-10)/22)*((i-11)/21)*((i-12)/20)*((i-13)/19)*((i-14)/18)*((i-15)/17)*((i-16)/16)*((i-17)/15)*((i-18)/14)*((i-19)/13)*((i-20)/12)*((i-21)/11)*((i-22)/10)*((i-23)/9)*((i-24)/8)*((i-25)/7)*((i-26)/6)*((i-27)/5)*((i-28)/4)*((i-29)/3)*((i-30)/2)*((i-31)/1))+3378846240*Math.round(1*((i-0)/33)*((i-1)/32)*((i-2)/31)*((i-3)/30)*((i-4)/29)*((i-5)/28)*((i-6)/27)*((i-7)/26)*((i-8)/25)*((i-9)/24)*((i-10)/23)*((i-11)/22)*((i-12)/21)*((i-13)/20)*((i-14)/19)*((i-15)/18)*((i-16)/17)*((i-17)/16)*((i-18)/15)*((i-19)/14)*((i-20)/13)*((i-21)/12)*((i-22)/11)*((i-23)/10)*((i-24)/9)*((i-25)/8)*((i-26)/7)*((i-27)/6)*((i-28)/5)*((i-29)/4)*((i-30)/3)*((i-31)/2)*((i-32)/1))+-7716754980*Math.round(1*((i-0)/34)*((i-1)/33)*((i-2)/32)*((i-3)/31)*((i-4)/30)*((i-5)/29)*((i-6)/28)*((i-7)/27)*((i-8)/26)*((i-9)/25)*((i-10)/24)*((i-11)/23)*((i-12)/22)*((i-13)/21)*((i-14)/20)*((i-15)/19)*((i-16)/18)*((i-17)/17)*((i-18)/16)*((i-19)/15)*((i-20)/14)*((i-21)/13)*((i-22)/12)*((i-23)/11)*((i-24)/10)*((i-25)/9)*((i-26)/8)*((i-27)/7)*((i-28)/6)*((i-29)/5)*((i-30)/4)*((i-31)/3)*((i-32)/2)*((i-33)/1))+17178273288*Math.round(1*((i-0)/35)*((i-1)/34)*((i-2)/33)*((i-3)/32)*((i-4)/31)*((i-5)/30)*((i-6)/29)*((i-7)/28)*((i-8)/27)*((i-9)/26)*((i-10)/25)*((i-11)/24)*((i-12)/23)*((i-13)/22)*((i-14)/21)*((i-15)/20)*((i-16)/19)*((i-17)/18)*((i-18)/17)*((i-19)/16)*((i-20)/15)*((i-21)/14)*((i-22)/13)*((i-23)/12)*((i-24)/11)*((i-25)/10)*((i-26)/9)*((i-27)/8)*((i-28)/7)*((i-29)/6)*((i-30)/5)*((i-31)/4)*((i-32)/3)*((i-33)/2)*((i-34)/1))+-37189436130*Math.round(1*((i-0)/36)*((i-1)/35)*((i-2)/34)*((i-3)/33)*((i-4)/32)*((i-5)/31)*((i-6)/30)*((i-7)/29)*((i-8)/28)*((i-9)/27)*((i-10)/26)*((i-11)/25)*((i-12)/24)*((i-13)/23)*((i-14)/22)*((i-15)/21)*((i-16)/20)*((i-17)/19)*((i-18)/18)*((i-19)/17)*((i-20)/16)*((i-21)/15)*((i-22)/14)*((i-23)/13)*((i-24)/12)*((i-25)/11)*((i-26)/10)*((i-27)/9)*((i-28)/8)*((i-29)/7)*((i-30)/6)*((i-31)/5)*((i-32)/4)*((i-33)/3)*((i-34)/2)*((i-35)/1))+78299888041*Math.round(1*((i-0)/37)*((i-1)/36)*((i-2)/35)*((i-3)/34)*((i-4)/33)*((i-5)/32)*((i-6)/31)*((i-7)/30)*((i-8)/29)*((i-9)/28)*((i-10)/27)*((i-11)/26)*((i-12)/25)*((i-13)/24)*((i-14)/23)*((i-15)/22)*((i-16)/21)*((i-17)/20)*((i-18)/19)*((i-19)/18)*((i-20)/17)*((i-21)/16)*((i-22)/15)*((i-23)/14)*((i-24)/13)*((i-25)/12)*((i-26)/11)*((i-27)/10)*((i-28)/9)*((i-29)/8)*((i-30)/7)*((i-31)/6)*((i-32)/5)*((i-33)/4)*((i-34)/3)*((i-35)/2)*((i-36)/1))+-160520791904*Math.round(1*((i-0)/38)*((i-1)/37)*((i-2)/36)*((i-3)/35)*((i-4)/34)*((i-5)/33)*((i-6)/32)*((i-7)/31)*((i-8)/30)*((i-9)/29)*((i-10)/28)*((i-11)/27)*((i-12)/26)*((i-13)/25)*((i-14)/24)*((i-15)/23)*((i-16)/22)*((i-17)/21)*((i-18)/20)*((i-19)/19)*((i-20)/18)*((i-21)/17)*((i-22)/16)*((i-23)/15)*((i-24)/14)*((i-25)/13)*((i-26)/12)*((i-27)/11)*((i-28)/10)*((i-29)/9)*((i-30)/8)*((i-31)/7)*((i-32)/6)*((i-33)/5)*((i-34)/4)*((i-35)/3)*((i-36)/2)*((i-37)/1))+321041584713*Math.round(1*((i-0)/39)*((i-1)/38)*((i-2)/37)*((i-3)/36)*((i-4)/35)*((i-5)/34)*((i-6)/33)*((i-7)/32)*((i-8)/31)*((i-9)/30)*((i-10)/29)*((i-11)/28)*((i-12)/27)*((i-13)/26)*((i-14)/25)*((i-15)/24)*((i-16)/23)*((i-17)/22)*((i-18)/21)*((i-19)/20)*((i-20)/19)*((i-21)/18)*((i-22)/17)*((i-23)/16)*((i-24)/15)*((i-25)/14)*((i-26)/13)*((i-27)/12)*((i-28)/11)*((i-29)/10)*((i-30)/9)*((i-31)/8)*((i-32)/7)*((i-33)/6)*((i-34)/5)*((i-35)/4)*((i-36)/3)*((i-37)/2)*((i-38)/1))+-627938339760*Math.round(1*((i-0)/40)*((i-1)/39)*((i-2)/38)*((i-3)/37)*((i-4)/36)*((i-5)/35)*((i-6)/34)*((i-7)/33)*((i-8)/32)*((i-9)/31)*((i-10)/30)*((i-11)/29)*((i-12)/28)*((i-13)/27)*((i-14)/26)*((i-15)/25)*((i-16)/24)*((i-17)/23)*((i-18)/22)*((i-19)/21)*((i-20)/20)*((i-21)/19)*((i-22)/18)*((i-23)/17)*((i-24)/16)*((i-25)/15)*((i-26)/14)*((i-27)/13)*((i-28)/12)*((i-29)/11)*((i-30)/10)*((i-31)/9)*((i-32)/8)*((i-33)/7)*((i-34)/6)*((i-35)/5)*((i-36)/4)*((i-37)/3)*((i-38)/2)*((i-39)/1))+1204809019815*Math.round(1*((i-0)/41)*((i-1)/40)*((i-2)/39)*((i-3)/38)*((i-4)/37)*((i-5)/36)*((i-6)/35)*((i-7)/34)*((i-8)/33)*((i-9)/32)*((i-10)/31)*((i-11)/30)*((i-12)/29)*((i-13)/28)*((i-14)/27)*((i-15)/26)*((i-16)/25)*((i-17)/24)*((i-18)/23)*((i-19)/22)*((i-20)/21)*((i-21)/20)*((i-22)/19)*((i-23)/18)*((i-24)/17)*((i-25)/16)*((i-26)/15)*((i-27)/14)*((i-28)/13)*((i-29)/12)*((i-30)/11)*((i-31)/10)*((i-32)/9)*((i-33)/8)*((i-34)/7)*((i-35)/6)*((i-36)/5)*((i-37)/4)*((i-38)/3)*((i-39)/2)*((i-40)/1))+-2276206770520*Math.round(1*((i-0)/42)*((i-1)/41)*((i-2)/40)*((i-3)/39)*((i-4)/38)*((i-5)/37)*((i-6)/36)*((i-7)/35)*((i-8)/34)*((i-9)/33)*((i-10)/32)*((i-11)/31)*((i-12)/30)*((i-13)/29)*((i-14)/28)*((i-15)/27)*((i-16)/26)*((i-17)/25)*((i-18)/24)*((i-19)/23)*((i-20)/22)*((i-21)/21)*((i-22)/20)*((i-23)/19)*((i-24)/18)*((i-25)/17)*((i-26)/16)*((i-27)/15)*((i-28)/14)*((i-29)/13)*((i-30)/12)*((i-31)/11)*((i-32)/10)*((i-33)/9)*((i-34)/8)*((i-35)/7)*((i-36)/6)*((i-37)/5)*((i-38)/4)*((i-39)/3)*((i-40)/2)*((i-41)/1))+4254673762574*Math.round(1*((i-0)/43)*((i-1)/42)*((i-2)/41)*((i-3)/40)*((i-4)/39)*((i-5)/38)*((i-6)/37)*((i-7)/36)*((i-8)/35)*((i-9)/34)*((i-10)/33)*((i-11)/32)*((i-12)/31)*((i-13)/30)*((i-14)/29)*((i-15)/28)*((i-16)/27)*((i-17)/26)*((i-18)/25)*((i-19)/24)*((i-20)/23)*((i-21)/22)*((i-22)/21)*((i-23)/20)*((i-24)/19)*((i-25)/18)*((i-26)/17)*((i-27)/16)*((i-28)/15)*((i-29)/14)*((i-30)/13)*((i-31)/12)*((i-32)/11)*((i-33)/10)*((i-34)/9)*((i-35)/8)*((i-36)/7)*((i-37)/6)*((i-38)/5)*((i-39)/4)*((i-40)/3)*((i-41)/2)*((i-42)/1))+-7914840120452*Math.round(1*((i-0)/44)*((i-1)/43)*((i-2)/42)*((i-3)/41)*((i-4)/40)*((i-5)/39)*((i-6)/38)*((i-7)/37)*((i-8)/36)*((i-9)/35)*((i-10)/34)*((i-11)/33)*((i-12)/32)*((i-13)/31)*((i-14)/30)*((i-15)/29)*((i-16)/28)*((i-17)/27)*((i-18)/26)*((i-19)/25)*((i-20)/24)*((i-21)/23)*((i-22)/22)*((i-23)/21)*((i-24)/20)*((i-25)/19)*((i-26)/18)*((i-27)/17)*((i-28)/16)*((i-29)/15)*((i-30)/14)*((i-31)/13)*((i-32)/12)*((i-33)/11)*((i-34)/10)*((i-35)/9)*((i-36)/8)*((i-37)/7)*((i-38)/6)*((i-39)/5)*((i-40)/4)*((i-41)/3)*((i-42)/2)*((i-43)/1))+14755713366633*Math.round(1*((i-0)/45)*((i-1)/44)*((i-2)/43)*((i-3)/42)*((i-4)/41)*((i-5)/40)*((i-6)/39)*((i-7)/38)*((i-8)/37)*((i-9)/36)*((i-10)/35)*((i-11)/34)*((i-12)/33)*((i-13)/32)*((i-14)/31)*((i-15)/30)*((i-16)/29)*((i-17)/28)*((i-18)/27)*((i-19)/26)*((i-20)/25)*((i-21)/24)*((i-22)/23)*((i-23)/22)*((i-24)/21)*((i-25)/20)*((i-26)/19)*((i-27)/18)*((i-28)/17)*((i-29)/16)*((i-30)/15)*((i-31)/14)*((i-32)/13)*((i-33)/12)*((i-34)/11)*((i-35)/10)*((i-36)/9)*((i-37)/8)*((i-38)/7)*((i-39)/6)*((i-40)/5)*((i-41)/4)*((i-42)/3)*((i-43)/2)*((i-44)/1))+-27776520662160*Math.round(1*((i-0)/46)*((i-1)/45)*((i-2)/44)*((i-3)/43)*((i-4)/42)*((i-5)/41)*((i-6)/40)*((i-7)/39)*((i-8)/38)*((i-9)/37)*((i-10)/36)*((i-11)/35)*((i-12)/34)*((i-13)/33)*((i-14)/32)*((i-15)/31)*((i-16)/30)*((i-17)/29)*((i-18)/28)*((i-19)/27)*((i-20)/26)*((i-21)/25)*((i-22)/24)*((i-23)/23)*((i-24)/22)*((i-25)/21)*((i-26)/20)*((i-27)/19)*((i-28)/18)*((i-29)/17)*((i-30)/16)*((i-31)/15)*((i-32)/14)*((i-33)/13)*((i-34)/12)*((i-35)/11)*((i-36)/10)*((i-37)/9)*((i-38)/8)*((i-39)/7)*((i-40)/6)*((i-41)/5)*((i-42)/4)*((i-43)/3)*((i-44)/2)*((i-45)/1))+53164054207611*Math.round(1*((i-0)/47)*((i-1)/46)*((i-2)/45)*((i-3)/44)*((i-4)/43)*((i-5)/42)*((i-6)/41)*((i-7)/40)*((i-8)/39)*((i-9)/38)*((i-10)/37)*((i-11)/36)*((i-12)/35)*((i-13)/34)*((i-14)/33)*((i-15)/32)*((i-16)/31)*((i-17)/30)*((i-18)/29)*((i-19)/28)*((i-20)/27)*((i-21)/26)*((i-22)/25)*((i-23)/24)*((i-24)/23)*((i-25)/22)*((i-26)/21)*((i-27)/20)*((i-28)/19)*((i-29)/18)*((i-30)/17)*((i-31)/16)*((i-32)/15)*((i-33)/14)*((i-34)/13)*((i-35)/12)*((i-36)/11)*((i-37)/10)*((i-38)/9)*((i-39)/8)*((i-40)/7)*((i-41)/6)*((i-42)/5)*((i-43)/4)*((i-44)/3)*((i-45)/2)*((i-46)/1))+-103975831339140*Math.round(1*((i-0)/48)*((i-1)/47)*((i-2)/46)*((i-3)/45)*((i-4)/44)*((i-5)/43)*((i-6)/42)*((i-7)/41)*((i-8)/40)*((i-9)/39)*((i-10)/38)*((i-11)/37)*((i-12)/36)*((i-13)/35)*((i-14)/34)*((i-15)/33)*((i-16)/32)*((i-17)/31)*((i-18)/30)*((i-19)/29)*((i-20)/28)*((i-21)/27)*((i-22)/26)*((i-23)/25)*((i-24)/24)*((i-25)/23)*((i-26)/22)*((i-27)/21)*((i-28)/20)*((i-29)/19)*((i-30)/18)*((i-31)/17)*((i-32)/16)*((i-33)/15)*((i-34)/14)*((i-35)/13)*((i-36)/12)*((i-37)/11)*((i-38)/10)*((i-39)/9)*((i-40)/8)*((i-41)/7)*((i-42)/6)*((i-43)/5)*((i-44)/4)*((i-45)/3)*((i-46)/2)*((i-47)/1))+208138306632137*Math.round(1*((i-0)/49)*((i-1)/48)*((i-2)/47)*((i-3)/46)*((i-4)/45)*((i-5)/44)*((i-6)/43)*((i-7)/42)*((i-8)/41)*((i-9)/40)*((i-10)/39)*((i-11)/38)*((i-12)/37)*((i-13)/36)*((i-14)/35)*((i-15)/34)*((i-16)/33)*((i-17)/32)*((i-18)/31)*((i-19)/30)*((i-20)/29)*((i-21)/28)*((i-22)/27)*((i-23)/26)*((i-24)/25)*((i-25)/24)*((i-26)/23)*((i-27)/22)*((i-28)/21)*((i-29)/20)*((i-30)/19)*((i-31)/18)*((i-32)/17)*((i-33)/16)*((i-34)/15)*((i-35)/14)*((i-36)/13)*((i-37)/12)*((i-38)/11)*((i-39)/10)*((i-40)/9)*((i-41)/8)*((i-42)/7)*((i-43)/6)*((i-44)/5)*((i-45)/4)*((i-46)/3)*((i-47)/2)*((i-48)/1))+-425620349055645*Math.round(1*((i-0)/50)*((i-1)/49)*((i-2)/48)*((i-3)/47)*((i-4)/46)*((i-5)/45)*((i-6)/44)*((i-7)/43)*((i-8)/42)*((i-9)/41)*((i-10)/40)*((i-11)/39)*((i-12)/38)*((i-13)/37)*((i-14)/36)*((i-15)/35)*((i-16)/34)*((i-17)/33)*((i-18)/32)*((i-19)/31)*((i-20)/30)*((i-21)/29)*((i-22)/28)*((i-23)/27)*((i-24)/26)*((i-25)/25)*((i-26)/24)*((i-27)/23)*((i-28)/22)*((i-29)/21)*((i-30)/20)*((i-31)/19)*((i-32)/18)*((i-33)/17)*((i-34)/16)*((i-35)/15)*((i-36)/14)*((i-37)/13)*((i-38)/12)*((i-39)/11)*((i-40)/10)*((i-41)/9)*((i-42)/8)*((i-43)/7)*((i-44)/6)*((i-45)/5)*((i-46)/4)*((i-47)/3)*((i-48)/2)*((i-49)/1))+884722839970606*Math.round(1*((i-0)/51)*((i-1)/50)*((i-2)/49)*((i-3)/48)*((i-4)/47)*((i-5)/46)*((i-6)/45)*((i-7)/44)*((i-8)/43)*((i-9)/42)*((i-10)/41)*((i-11)/40)*((i-12)/39)*((i-13)/38)*((i-14)/37)*((i-15)/36)*((i-16)/35)*((i-17)/34)*((i-18)/33)*((i-19)/32)*((i-20)/31)*((i-21)/30)*((i-22)/29)*((i-23)/28)*((i-24)/27)*((i-25)/26)*((i-26)/25)*((i-27)/24)*((i-28)/23)*((i-29)/22)*((i-30)/21)*((i-31)/20)*((i-32)/19)*((i-33)/18)*((i-34)/17)*((i-35)/16)*((i-36)/15)*((i-37)/14)*((i-38)/13)*((i-39)/12)*((i-40)/11)*((i-41)/10)*((i-42)/9)*((i-43)/8)*((i-44)/7)*((i-45)/6)*((i-46)/5)*((i-47)/4)*((i-48)/3)*((i-49)/2)*((i-50)/1))+-1857183748827153*Math.round(1*((i-0)/52)*((i-1)/51)*((i-2)/50)*((i-3)/49)*((i-4)/48)*((i-5)/47)*((i-6)/46)*((i-7)/45)*((i-8)/44)*((i-9)/43)*((i-10)/42)*((i-11)/41)*((i-12)/40)*((i-13)/39)*((i-14)/38)*((i-15)/37)*((i-16)/36)*((i-17)/35)*((i-18)/34)*((i-19)/33)*((i-20)/32)*((i-21)/31)*((i-22)/30)*((i-23)/29)*((i-24)/28)*((i-25)/27)*((i-26)/26)*((i-27)/25)*((i-28)/24)*((i-29)/23)*((i-30)/22)*((i-31)/21)*((i-32)/20)*((i-33)/19)*((i-34)/18)*((i-35)/17)*((i-36)/16)*((i-37)/15)*((i-38)/14)*((i-39)/13)*((i-40)/12)*((i-41)/11)*((i-42)/10)*((i-43)/9)*((i-44)/8)*((i-45)/7)*((i-46)/6)*((i-47)/5)*((i-48)/4)*((i-49)/3)*((i-50)/2)*((i-51)/1))+3909404796652936*Math.round(1*((i-0)/53)*((i-1)/52)*((i-2)/51)*((i-3)/50)*((i-4)/49)*((i-5)/48)*((i-6)/47)*((i-7)/46)*((i-8)/45)*((i-9)/44)*((i-10)/43)*((i-11)/42)*((i-12)/41)*((i-13)/40)*((i-14)/39)*((i-15)/38)*((i-16)/37)*((i-17)/36)*((i-18)/35)*((i-19)/34)*((i-20)/33)*((i-21)/32)*((i-22)/31)*((i-23)/30)*((i-24)/29)*((i-25)/28)*((i-26)/27)*((i-27)/26)*((i-28)/25)*((i-29)/24)*((i-30)/23)*((i-31)/22)*((i-32)/21)*((i-33)/20)*((i-34)/19)*((i-35)/18)*((i-36)/17)*((i-37)/16)*((i-38)/15)*((i-39)/14)*((i-40)/13)*((i-41)/12)*((i-42)/11)*((i-43)/10)*((i-44)/9)*((i-45)/8)*((i-46)/7)*((i-47)/6)*((i-48)/5)*((i-49)/4)*((i-50)/3)*((i-51)/2)*((i-52)/1))+-8195615777370807*Math.round(1*((i-0)/54)*((i-1)/53)*((i-2)/52)*((i-3)/51)*((i-4)/50)*((i-5)/49)*((i-6)/48)*((i-7)/47)*((i-8)/46)*((i-9)/45)*((i-10)/44)*((i-11)/43)*((i-12)/42)*((i-13)/41)*((i-14)/40)*((i-15)/39)*((i-16)/38)*((i-17)/37)*((i-18)/36)*((i-19)/35)*((i-20)/34)*((i-21)/33)*((i-22)/32)*((i-23)/31)*((i-24)/30)*((i-25)/29)*((i-26)/28)*((i-27)/27)*((i-28)/26)*((i-29)/25)*((i-30)/24)*((i-31)/23)*((i-32)/22)*((i-33)/21)*((i-34)/20)*((i-35)/19)*((i-36)/18)*((i-37)/17)*((i-38)/16)*((i-39)/15)*((i-40)/14)*((i-41)/13)*((i-42)/12)*((i-43)/11)*((i-44)/10)*((i-45)/9)*((i-46)/8)*((i-47)/7)*((i-48)/6)*((i-49)/5)*((i-50)/4)*((i-51)/3)*((i-52)/2)*((i-53)/1))+16994979589974346*Math.round(1*((i-0)/55)*((i-1)/54)*((i-2)/53)*((i-3)/52)*((i-4)/51)*((i-5)/50)*((i-6)/49)*((i-7)/48)*((i-8)/47)*((i-9)/46)*((i-10)/45)*((i-11)/44)*((i-12)/43)*((i-13)/42)*((i-14)/41)*((i-15)/40)*((i-16)/39)*((i-17)/38)*((i-18)/37)*((i-19)/36)*((i-20)/35)*((i-21)/34)*((i-22)/33)*((i-23)/32)*((i-24)/31)*((i-25)/30)*((i-26)/29)*((i-27)/28)*((i-28)/27)*((i-29)/26)*((i-30)/25)*((i-31)/24)*((i-32)/23)*((i-33)/22)*((i-34)/21)*((i-35)/20)*((i-36)/19)*((i-37)/18)*((i-38)/17)*((i-39)/16)*((i-40)/15)*((i-41)/14)*((i-42)/13)*((i-43)/12)*((i-44)/11)*((i-45)/10)*((i-46)/9)*((i-47)/8)*((i-48)/7)*((i-49)/6)*((i-50)/5)*((i-51)/4)*((i-52)/3)*((i-53)/2)*((i-54)/1))+-34598925396029428*Math.round(1*((i-0)/56)*((i-1)/55)*((i-2)/54)*((i-3)/53)*((i-4)/52)*((i-5)/51)*((i-6)/50)*((i-7)/49)*((i-8)/48)*((i-9)/47)*((i-10)/46)*((i-11)/45)*((i-12)/44)*((i-13)/43)*((i-14)/42)*((i-15)/41)*((i-16)/40)*((i-17)/39)*((i-18)/38)*((i-19)/37)*((i-20)/36)*((i-21)/35)*((i-22)/34)*((i-23)/33)*((i-24)/32)*((i-25)/31)*((i-26)/30)*((i-27)/29)*((i-28)/28)*((i-29)/27)*((i-30)/26)*((i-31)/25)*((i-32)/24)*((i-33)/23)*((i-34)/22)*((i-35)/21)*((i-36)/20)*((i-37)/19)*((i-38)/18)*((i-39)/17)*((i-40)/16)*((i-41)/15)*((i-42)/14)*((i-43)/13)*((i-44)/12)*((i-45)/11)*((i-46)/10)*((i-47)/9)*((i-48)/8)*((i-49)/7)*((i-50)/6)*((i-51)/5)*((i-52)/4)*((i-53)/3)*((i-54)/2)*((i-55)/1))+68349348631526670*Math.round(1*((i-0)/57)*((i-1)/56)*((i-2)/55)*((i-3)/54)*((i-4)/53)*((i-5)/52)*((i-6)/51)*((i-7)/50)*((i-8)/49)*((i-9)/48)*((i-10)/47)*((i-11)/46)*((i-12)/45)*((i-13)/44)*((i-14)/43)*((i-15)/42)*((i-16)/41)*((i-17)/40)*((i-18)/39)*((i-19)/38)*((i-20)/37)*((i-21)/36)*((i-22)/35)*((i-23)/34)*((i-24)/33)*((i-25)/32)*((i-26)/31)*((i-27)/30)*((i-28)/29)*((i-29)/28)*((i-30)/27)*((i-31)/26)*((i-32)/25)*((i-33)/24)*((i-34)/23)*((i-35)/22)*((i-36)/21)*((i-37)/20)*((i-38)/19)*((i-39)/18)*((i-40)/17)*((i-41)/16)*((i-42)/15)*((i-43)/14)*((i-44)/13)*((i-45)/12)*((i-46)/11)*((i-47)/10)*((i-48)/9)*((i-49)/8)*((i-50)/7)*((i-51)/6)*((i-52)/5)*((i-53)/4)*((i-54)/3)*((i-55)/2)*((i-56)/1))+-126849859681465840*Math.round(1*((i-0)/58)*((i-1)/57)*((i-2)/56)*((i-3)/55)*((i-4)/54)*((i-5)/53)*((i-6)/52)*((i-7)/51)*((i-8)/50)*((i-9)/49)*((i-10)/48)*((i-11)/47)*((i-12)/46)*((i-13)/45)*((i-14)/44)*((i-15)/43)*((i-16)/42)*((i-17)/41)*((i-18)/40)*((i-19)/39)*((i-20)/38)*((i-21)/37)*((i-22)/36)*((i-23)/35)*((i-24)/34)*((i-25)/33)*((i-26)/32)*((i-27)/31)*((i-28)/30)*((i-29)/29)*((i-30)/28)*((i-31)/27)*((i-32)/26)*((i-33)/25)*((i-34)/24)*((i-35)/23)*((i-36)/22)*((i-37)/21)*((i-38)/20)*((i-39)/19)*((i-40)/18)*((i-41)/17)*((i-42)/16)*((i-43)/15)*((i-44)/14)*((i-45)/13)*((i-46)/12)*((i-47)/11)*((i-48)/10)*((i-49)/9)*((i-50)/8)*((i-51)/7)*((i-52)/6)*((i-53)/5)*((i-54)/4)*((i-55)/3)*((i-56)/2)*((i-57)/1))+189776303470473200*Math.round(1*((i-0)/59)*((i-1)/58)*((i-2)/57)*((i-3)/56)*((i-4)/55)*((i-5)/54)*((i-6)/53)*((i-7)/52)*((i-8)/51)*((i-9)/50)*((i-10)/49)*((i-11)/48)*((i-12)/47)*((i-13)/46)*((i-14)/45)*((i-15)/44)*((i-16)/43)*((i-17)/42)*((i-18)/41)*((i-19)/40)*((i-20)/39)*((i-21)/38)*((i-22)/37)*((i-23)/36)*((i-24)/35)*((i-25)/34)*((i-26)/33)*((i-27)/32)*((i-28)/31)*((i-29)/30)*((i-30)/29)*((i-31)/28)*((i-32)/27)*((i-33)/26)*((i-34)/25)*((i-35)/24)*((i-36)/23)*((i-37)/22)*((i-38)/21)*((i-39)/20)*((i-40)/19)*((i-41)/18)*((i-42)/17)*((i-43)/16)*((i-44)/15)*((i-45)/14)*((i-46)/13)*((i-47)/12)*((i-48)/11)*((i-49)/10)*((i-50)/9)*((i-51)/8)*((i-52)/7)*((i-53)/6)*((i-54)/5)*((i-55)/4)*((i-56)/3)*((i-57)/2)*((i-58)/1))+51028516348018696*Math.round(1*((i-0)/60)*((i-1)/59)*((i-2)/58)*((i-3)/57)*((i-4)/56)*((i-5)/55)*((i-6)/54)*((i-7)/53)*((i-8)/52)*((i-9)/51)*((i-10)/50)*((i-11)/49)*((i-12)/48)*((i-13)/47)*((i-14)/46)*((i-15)/45)*((i-16)/44)*((i-17)/43)*((i-18)/42)*((i-19)/41)*((i-20)/40)*((i-21)/39)*((i-22)/38)*((i-23)/37)*((i-24)/36)*((i-25)/35)*((i-26)/34)*((i-27)/33)*((i-28)/32)*((i-29)/31)*((i-30)/30)*((i-31)/29)*((i-32)/28)*((i-33)/27)*((i-34)/26)*((i-35)/25)*((i-36)/24)*((i-37)/23)*((i-38)/22)*((i-39)/21)*((i-40)/20)*((i-41)/19)*((i-42)/18)*((i-43)/17)*((i-44)/16)*((i-45)/15)*((i-46)/14)*((i-47)/13)*((i-48)/12)*((i-49)/11)*((i-50)/10)*((i-51)/9)*((i-52)/8)*((i-53)/7)*((i-54)/6)*((i-55)/5)*((i-56)/4)*((i-57)/3)*((i-58)/2)*((i-59)/1))} 

이 다항식 함수 (25 도로 단순화하고 반올림하지 않음)는 정수의 값을 봅니다 ([6; 19]에서 읽을 수 있음).

여기에 이미지 설명을 입력하십시오

테스트 :

for (var i=0; i<60; i++) { console.log(i + ' : ' + digitsum(i)) }
0 : 0
1 : 1
2 : 2
3 : 3
4 : 4
5 : 5
6 : 6
7 : 7
8 : 8
9 : 9
10 : 1
11 : 2
12 : 3
13 : 4
14 : 5
15 : 6
16 : 7
17 : 8
18 : 9
19 : 10
20 : 2
21 : 3
22 : 4
23 : 5
24 : 6
25 : 7
26 : 8
27 : 9
28 : 10
29 : 11
30 : 3
31 : 4
32 : 5
33 : 6
34 : 7
35 : 8
36 : 9
37 : 10
38 : 11
39 : 12
40 : 4
41 : 5
42 : 6
43 : 7
44 : 8
45 : 9
46 : 10
47 : 11
48 : 12
49 : 13
50 : 5
51 : 6
52 : 7
53 : 8
54 : 9
55 : 10
56 : 12 //precision issue starts here
57 : 16
58 : 16
59 : 0 

+1 멋지다. 다항식 보간법 대신 스플라인 보간법을 원할 수도 있지만, 이는 진화 알고리즘과 관련이있을 수 있지만보다 정확할 수 있습니다.
SztupY 2019

@SztupY, 재미있는! 스플라인 작업에는 익숙하지 않지만이 방법을 확실히 살펴볼 것입니다. 감사.
Michael M.
당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.