숫자를 표현-현대 "Des Chiffres et des Lettres"


16

숫자를 표현하다

60 년대에 프랑스 인은 TV 게임 쇼 "Des Chiffres et des Lettres"(Digits & Letters)를 발명했습니다. 쇼의 자릿수 부분의 목표는 반 무작위로 선택된 숫자를 사용하여 특정 3 자리 목표 번호에 최대한 가깝게하는 것입니다. 참가자는 다음 연산자를 사용할 수 있습니다.

  • 연결 (1과 2는 12)
  • 더하기 (1 + 2는 3)
  • 빼기 (5-3 = 2)
  • 나누기 (8/2 = 4); 결과가 자연수 인 경우에만 나눗셈이 허용됩니다.
  • 곱셈 (2 * 3 = 6)
  • 괄호는 규칙적인 우선 순위를 무시합니다. 2 * (3 + 4) = 14

주어진 숫자는 한 번만 사용하거나 전혀 사용하지 않을 수 있습니다.

예를 들어, 대상 번호 728은 다음 표현식을 사용하여 숫자 6, 10, 25, 75, 5 및 50과 정확하게 일치시킬 수 있습니다.

75 * 10 - ( ( 6 + 5 ) * ( 50 / 25 ) ) = 750 - ( 11 * 2 ) = 750 - 22 = 728

아직도 원래 Frensh "Des Chiffres et des Lettres"에서

이 코드 챌린지에서는 가능한 한 특정 대상 번호에 가까운 표현식을 찾는 작업이 제공됩니다. 우리는 21 세기에 살고 있기 때문에 60 년대에 비해 더 큰 목표 수와 더 많은 수를 소개 할 것입니다.

규칙

  • 허용되는 연산자 : 연결, +,-, /, *, (및)
  • 연결 연산자에는 기호가 없습니다. 숫자를 연결하십시오.
  • "역 연결"은 없습니다. 69는 69이며 6과 9로 나눌 수 없습니다.
  • 대상 숫자는 양의 정수이며 최대 18 자리입니다.
  • 작업 할 최소 두 개의 숫자와 최대 99 개의 숫자가 있습니다. 이 숫자는 최대 18 자리의 양의 정수입니다.
  • 목표 숫자를 숫자와 연산자로 표현할 수는 없습니다 (실제로 아마). 목표는 가능한 한 가깝게하는 것입니다.
  • 프로그램은 합리적인 시간 (현대 데스크탑 PC에서 몇 분) 내에 완료되어야합니다.
  • 표준 허점이 적용됩니다.
  • 이 퍼즐의 "점수"섹션에있는 테스트 세트에 맞게 프로그램이 최적화 되지 않았을 수 있습니다. 본인은이 규칙을 위반하는 사람이 의심되면 테스트 세트를 변경할 권리가 있습니다.
  • 이것은 코드 골프 가 아닙니다 .

입력

입력은 편리한 방식으로 형식화 할 수있는 숫자 배열로 구성됩니다. 첫 번째 숫자는 대상 번호입니다. 나머지 숫자는 목표 숫자를 구성하기 위해 사용해야하는 숫자입니다.

산출

출력 요구 사항은 다음과 같습니다.

  • 다음으로 구성된 문자열이어야합니다.
    • 입력 번호의 서브 세트 (대상 번호 제외)
    • 여러 운영자
  • 공백이없는 한 줄로 출력하는 것을 선호하지만 필요한 경우 공백과 줄 바꿈을 추가 할 수 있습니다. 제어 프로그램에서는 무시됩니다.
  • 출력은 유효한 수학 식이어야합니다.

가독성을 위해이 모든 예제에는 정확한 솔루션이 있으며 각 입력 번호는 정확히 한 번만 사용됩니다.

입력 : 1515483, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
출력 :111*111*(111+11+1)

입력 : 153135, 1, 2, 3, 4, 5, 6, 7, 8, 9
출력 :123*(456+789)

입력 : 8888888888, 9, 9, 9, 99, 99, 99, 999, 999, 999, 9999, 9999, 9999, 99999, 99999, 99999, 1
출력 :9*99*999*9999-9999999-999999-99999-99999-99999-9999-999-9-1

입력 : 207901, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0
출력 :1+2*(3+4)*(5+6)*(7+8)*90

입력 : 34943, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 출력 : 1+2*(3+4*(5+6*(7+8*90))) 또한 유효한 출력은 다음과 같습니다.34957-6-8

채점

프로그램의 페널티 스코어는 아래 테스트 세트에 대한 표현식의 상대 오차의 합계입니다.

득점 방정식

예를 들어 목표 값이 125이고식이 120이면 페널티 점수는 abs (1-120/125) = 0,04입니다.

가장 낮은 점수 (가장 낮은 총 상대 오차)를 가진 프로그램이 승리합니다. 두 프로그램이 동일하게 완료되면 첫 번째 제출물이 승리합니다.

마지막으로 테스트 세트 (8 건) :

14142, 10, 11, 12, 13, 14, 15
48077691, 6, 9, 66, 69, 666, 669, 696, 699, 966, 969, 996, 999
333723173, 3, 3, 3, 33, 333, 3333, 33333, 333333, 3333333, 33333333, 333333333
589637567, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
8067171096, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199
78649377055, 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992
792787123866, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169
2423473942768, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000, 2000000, 5000000, 10000000, 20000000, 50000000

이전의 유사한 퍼즐

이 퍼즐을 만들어 샌드 박스에 게시 한 후 두 개의 이전 퍼즐 ( 여기서는 해결책 없음)과 여기 에서 비슷한 것을 발견 했습니다 . 이 퍼즐은 연결 연산자를 소개하기 때문에 다소 다릅니다. 검색하지 않고 정확하게 일치하며 무차별 적으로 솔루션에 접근하기위한 전략을보고 싶습니다. 도전적이라고 생각합니다.


6
다른 연산자의 결과를 연결할 수 있습니까? 예를 들어 21 = (1 + 1) 1입니다.
Andrew는 Monica Monica Reinstate Monica가

1
와. 좋은 질문. 그 생각하지 않았다. 나의 첫 반응은 "아무것도 아니었다. 그것이 내가 의도 한 방식이 아니다". 그러나 너무 합리적입니다. 이것이 불가능하다면 연결은 많은 연산자가 아닐 것입니다. 그래서 ... 네! 있을 수있다. 표현식 주위에 괄호를 넣고 그 옆에 다른 표현식이나 숫자를 넣으면 연결이 있습니다. 따라서 (1 + 1) (1 + 1)은 22입니다. 그에 따라 질문을 조정하겠습니다.
agtoever

1
내가 어렸을 때 그 쇼를 보았는데 연결 연산자 가 없었습니다 . 아마 90 년대 이후로 규칙이 바뀌었을 수도 있습니다.
Michael M.

아마 당신 말이 맞을 것입니다. 나는 그것에 대해 확신하지 못했습니다. 그러나 그것은 퍼즐을 더욱 흥미롭게 만듭니다 ...
agtoever

1
나는 연결이 존재하지 않거나 최근에 추가 된 것을 확인하지만 그것을 좋아합니다. 챌린지를 훨씬 더 재미있게 만듭니다!
Docteur

답변:


5

C ++ 17, 점수 .0086

이 프로그램은 스레드 레이스로 인해 결정적이지 않은 페널티 스코어를 가지므로 평균 3 회 실행을 기준으로 선언합니다. 각 실행은 1 분 안에 테스트 스위트를 처리했습니다.

score 0.000071 for 14(11*13) = 14143
score 0.000019 for (696699+66)*69 = 48076785
score 0.000069 for 333333+333333333+33333 = 333699999
score 0.000975 for 5(1((((555555255-1-1-4-5-5-5-5-4-4-4-4-4-4-4-4-4-4-4-4-4-5-3-3-3-3-3-3-3-3-3-3-3-3-3-5)/2*3/2-2)/2*3+2+1+1+1+1-1-1)/2*2/2/2/2)/2) = 589062470
score 0.000462 for (((199181197*41-193-191-179-173-167-163-157-151-149-139-137-131-127-113-109-107-103-101-97-89-83-79-73-71-67-61-59-53-47-43-17-3)/5*7+23)/2/11*13+19)/31*37 = 8063447296
score 0.000118 for (992930870*72+812+756+702+650+600+552+506+462+420+380+342-42-56-182-12-210-156-90-20-272-30-6-306)/240*132*2 = 78640130184
score 0.000512 for (((317811*832040*3-39088169-24157817-14930352-9227465-5702887-2178309-1346269-3524578-514229-196418-121393-17711-233-75025-46368-89-28657-4181-10946-6765-34-987-2584-13-610-8-1)/2-377-144)/5-1597)1 = 793193194211
score 0.005725 for 2(20((120000000*20000+50000000+10000000+5000000+2000000+100000+50000+10000+5000+2000-500-1000)/50)/5)+200+100+10 = 2409600268972
total score = .007951

real    0m57.876s
user    4m24.396s
sys     0m0.684s

score 0.000071 for 14(11*13) = 14143
score 0.000019 for (696699+66)*69 = 48076785
score 0.000069 for 333333+333333333+33333 = 333699999
score 0.001675 for (3((((((((555555455+5+5+5+5-1-1-4-4-4-4-4-4-4-4-4-1-4-4-4-4-5-3-3-3-3-3-4)/2*3/2-1)*2+5)/3*3+3)/2-3-3)/2*3/2*2+2)/2*2/2*3+2+1)/5/2)-1-1-1-1-1-1-1-1-1-2)/2*3 = 590624943
score 0.000973 for ((199181197*41-193-191-179-173-167-163-157-151-149-139-137-131-127-113-107-101-59-97-79-3-71-67-83-2-47-37-73-89-103-19-11-29)/5*7+109-23)/61*43 = 8059325224
score 0.000118 for ((992930870*72+812+756+702+650+600+552+506+462+420+380+342+306+272+240+210+182-0-56-110-20-90)/2-42-156)/30*132/12*6 = 78640132296
score 0.000512 for (((317811*832040*3-39088169-24157817-14930352-9227465-5702887-3524578-514229-196418-2178309-1346269-121393-75025-28657-10946-233-46368-89-17711-2584-6765-610-4181-34-987-55-1)/2-8-144-377)/5-1597)1 = 793193194161
score 0.004734 for 2(20((120000000*20000+50000000+10000000+5000000+2000000+100000+50000+10000+5000+2000-100-1000-500)/200*50/10)/5) = 2412000335827
total score = .008171

real    0m45.636s
user    3m30.272s
sys     0m0.720s

score 0.000071 for 14(11*13) = 14143
score 0.000019 for (696699+66)*69 = 48076785
score 0.000069 for 333333+333333333+33333 = 333699999
score 0.002963 for 1(((((((555555555+5+5+5+5+5+5+4+4+4+4-1-2-4-4-4-4-4-4-4-4-4-4-4-3-3-3-3)/2*3+3+2)/2*2+3+3)/2*2/2/2*3+3)/2-3-3)*3/2-1-3)/2*3/2/2)/2 = 587890622
score 0.000069 for ((((199181197*41-193-191-179-173-167-163-157-151-149-139-137-131-127-113-109-107-103-101-97-89-83-79-73-71-67-61-59-53-47-43-37-11)/7)2+3)/23*17-13-5)/31*29 = 8066615553
score 0.000118 for ((992930870*72+812+756+702+650+600+552+506+462+420+380-0-6-90-56-42-272-182-110-210-342-30-306)*2+12)/240*132 = 78640129524
score 0.000512 for (((317811*832040*3-39088169-24157817-14930352-9227465-5702887-2178309-1346269-3524578-514229-196418-121393-75025-46368-28657-144-55-17711-2584-10946-4181-6765-21-610-987-377-8-1)/2-89-13)/5-233-1597)1 = 793193192491
score 0.005725 for 2(20((120000000*20000+50000000+10000000+5000000+2000000+100000+50000+10000+5000+2000-500-1000)/50)/5)+200+100+10 = 2409600268972
total score = .009546

real    0m57.289s
user    4m19.488s
sys     0m0.708s

프로그램은 다음과 같습니다. 설명은 주석으로 제공됩니다. CONCAT_NONE연결을 허용하지 않거나 CONCAT_DIGITS입력 값의 연결을 허용하지만 중간 결과는 허용하지 않는 기존 카운트 다운 규칙을 정의 할 수 있습니다 . 기본적으로 정의되지 않은 경우 가장 자유로운 규칙이 사용됩니다.

#include <omp.h>

#include <algorithm>
#include <cmath>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>

// We apply some principles to help us arrive at a good enough solution
// in a reasonable time:

// 1. Ruthlessly prune duplicate expressions from the candidate
//    list.  If we've seen a+b, then there's no need to consider
//    b+a.  Similarly, having seen (a+b)+c, then (a+c)+b can be
//    discounted.
// 2. Detect duplicates by storing batches of part-processed results
//    in sets before sending to the next pass.
// 3. Sort our candidates so that those containing a term near to the
//    target are first in line for further processing.
// 4. Gradually widen our acceptance margin as we proceed.  This
//    allows us to terminate quickly without exhaustively searching
//    the full problem space.
// 5. Parallelize the generation of candidate solutions using OpenMP.

// Define precedence values for our operators, so that we can print
// with the minimum sufficient parentheses.  The values are grouped
// into tens so that add/10 == subtract/10 and mult/10 == divide/10 -
// the operators use that for avoiding duplicate expressions.
static const int PREC_ADD = 26;
static const int PREC_SUBTRACT = 24;
static const int PREC_MULT = 16;
static const int PREC_DIVIDE = 14;
static const int PREC_CONCAT = 2;
static const int PREC_LITERAL = 0;

static const int PREC_MAX = 1000;

class LiteralTerm;

struct Term
{
    long value;
    int precedence;

    Term(long value, int precedence)
        : value(value), precedence(precedence)
    {}
    Term(const Term&) = default;
    virtual ~Term() = default;

    virtual std::string to_string(int p = PREC_MAX) const = 0;
    virtual LiteralTerm as_literal() const = 0;

    long distance(long target) const { return std::abs(value - target); }

    // We sort large values first, in the hope that this will approach
    // the target faster.
    bool operator<(const Term& o) const { return value > o.value; }
};


// We have two kinds of Term: a LiteralTerm is a leaf node of the
// expression tree, and a BinaryTerm is an internal node.
struct Operator;

class LiteralTerm : public Term
{
    std::string s;
public:
    LiteralTerm(std::string s) : Term(std::stol(s), 0), s(s) {}
    LiteralTerm(std::string s, long value) : Term(value, 0), s(s) {}
    std::string to_string(int = PREC_MAX) const override { return s; }
    LiteralTerm as_literal() const override { return *this; }
};

struct BinaryTerm : public Term
{
    Operator const *op;

    std::shared_ptr<const Term> a;
    std::shared_ptr<const Term> b;

    BinaryTerm(long value, const Operator* op, std::shared_ptr<const Term> a, std::shared_ptr<const Term> b);
    BinaryTerm(const BinaryTerm&) = default;
    BinaryTerm& operator=(const BinaryTerm&) = default;

    std::string to_string(int p = PREC_MAX) const;

    LiteralTerm as_literal() const override { return { to_string(), value }; }
};

struct TermList {
    std::vector<std::shared_ptr<const Term>> terms;
    std::vector<long> values;
    long target_value;
    long badness;

    TermList(std::vector<std::shared_ptr<const Term>> terms, long target_value)
        : terms(std::move(terms)),
          values(),
          target_value(target_value),
          badness(min_badness(this->terms, target_value))
    {
        values.reserve(terms.size());
        std::transform(terms.begin(), terms.end(),
                       std::back_inserter(values), [](auto t) { return t->value; });
        // Literals that begin with "0" need to be distinct from (but
        // adjacent to) equivalent non-literals.  Append a negative
        // value for each term with leading zeros.  There's an edge
        // case involving multiple leading zeros, but we'll ignore
        // that.
        for (const auto& v: terms)
            if (v->precedence <= PREC_CONCAT && v->value > 0 && v->to_string()[0] == '0')
                values.push_back(-v->value);
    }

    // Sort according to the term that's nearest to the target.
    bool operator<(const TermList& o) const
    {
        return std::make_tuple(std::cref(badness),   std::cref(values))
            <  std::make_tuple(std::cref(o.badness), std::cref(o.values));
    }

private:
    static long min_badness(const std::vector<std::shared_ptr<const Term>>& t, long target_value)
    {
        auto less_bad = [target_value](const auto& a, const auto&b)
            { return a->distance(target_value) < b->distance(target_value); };
        auto const& e = *std::min_element(t.begin(), t.end(), less_bad);
        return std::abs(e->value - target_value);
    }
};

using Set = std::set<TermList>;

// Detect duplicate expressions.  This will discount "3+2-3", "8*5*2/3/5"
// and similar expressions that contain simple pairs of inverse operands.
static bool contains_value(const Term& t, int precedence, long value)
{
    auto *const b = dynamic_cast<const BinaryTerm*>(&t);
    if (t.precedence == precedence)
        return t.value == value
            || b && b->b->value < value
            || b && contains_value(*b->a, precedence, value)
            || b && contains_value(*b->b, precedence, value);
    if (t.precedence/10 == precedence/10)
        // Advance through the subtractions to inspect the additions
        // (or through the divides to inspect the multiplications).
        return b && contains_value(*b->a, precedence, value);
    return false;
}

// An Operator is a factory producing binary terms of a given type,
// and for printing those terms.  Here's the abstract base class.
struct Operator
{
    using TermPointer = std::shared_ptr<const Term>;
    using BinaryTermPointer = std::shared_ptr<const BinaryTerm>;

    int const precedence;
    std::string const joiner;

    virtual std::string to_string(const Term &a, const Term &b) const {
        return a.to_string(precedence) + joiner + b.to_string(precedence);
    }

    virtual BinaryTermPointer make_term(TermPointer a, TermPointer b) const {
        long r = evaluate(*a, *b);
        return r ? std::make_shared<BinaryTerm>(r, this, a, b) : BinaryTermPointer();
    }

    virtual ~Operator() = default;

protected:
    Operator(int precedence, std::string joiner) : precedence(precedence), joiner(joiner) {}

    virtual long evaluate(const Term& a, const Term& b) const = 0;
};

// Now we define a subclass for each permitted operator
struct AddOperator : Operator
{
    AddOperator() : Operator(PREC_ADD, "+") {}

    long evaluate(const Term& a, const Term& b) const override
    {
        const auto *d = dynamic_cast<const BinaryTerm*>(&a);
        long r;
        return b.precedence/10 != PREC_ADD/10
            && a.precedence != PREC_SUBTRACT
            && b.value > 0
            && ! (d && d->precedence == this->precedence && d->b->value < b.value)
            && !__builtin_add_overflow(a.value, b.value, &r)
            ? r : 0;
    }
};
struct SubtractOperator : Operator
{
    SubtractOperator() : Operator(PREC_SUBTRACT, "-") {}

    long evaluate(const Term& a, const Term& b) const override
    {
        return b.precedence < PREC_SUBTRACT
            && a.value > b.value
            && !contains_value(a, PREC_ADD, b.value)
            ? a.value - b.value : 0;
    }
};
struct MultiplyOperator : Operator
{
    MultiplyOperator() : Operator(PREC_MULT, "*") {}

    long evaluate(const Term& a, const Term& b) const override
    {
        const auto *d = dynamic_cast<const BinaryTerm*>(&a);
        long r;
        return b.precedence/10 != PREC_MULT/10
            && b.value > 1
            && (b.value > 2 || a.value > 2)
            && ! (d && d->precedence == this->precedence && d->b->value < b.value)
            && !__builtin_mul_overflow(a.value, b.value, &r)
            ? r : 0;
    }
};
struct DivideOperator : Operator
{
    DivideOperator() : Operator(PREC_DIVIDE, "/") {}

    long evaluate(const Term& a, const Term& b) const override
    {
        return b.precedence/10 != PREC_DIVIDE/10 && b.value > 1
            && a.value % b.value == 0
            && !contains_value(a, PREC_MULT, b.value)
            ? a.value / b.value : 0;
    }
};

struct ConcatOperator : Operator
{
    ConcatOperator() : Operator(PREC_CONCAT, "") {}

    long evaluate(const Term& a, const Term& b) const override
    {
#ifdef CONCAT_DIGITS
        if (a.precedence > PREC_CONCAT || a.value == 0 || b.precedence >= PREC_CONCAT)
            return 0;
#else  // CONCAT_FULL
        if (b.precedence == PREC_CONCAT || a.value == 0)
            return 0;
#endif
        long bv = b.value, av = a.value, x = 1, r;
        if (b.precedence > PREC_CONCAT) while (x <= bv) x*= 10;
        else { int d = b.to_string().length(); while (d--) x*= 10; }
        return __builtin_mul_overflow(av, x, &r) || __builtin_add_overflow(r, bv, &r) ? 0 : r;
    }
};
struct ReverseConcatOperator : ConcatOperator
{
    BinaryTermPointer make_term(TermPointer a, TermPointer b) const override
    {
        return ConcatOperator::make_term(b, a);
    }
};

static const std::vector<std::shared_ptr<const Operator>> ops{
#ifndef CONCAT_NONE
        std::make_shared<ConcatOperator>(),
        std::make_shared<ReverseConcatOperator>(),
#endif
        std::make_shared<MultiplyOperator>(),
        std::make_shared<AddOperator>(),
        std::make_shared<SubtractOperator>(),
        std::make_shared<DivideOperator>(),
};


// Implement the BinaryTerm members that use Operator
BinaryTerm::BinaryTerm(long value, const Operator* op, std::shared_ptr<const Term> a, std::shared_ptr<const Term> b)
    : Term(value, op->precedence), op(op), a(std::move(a)), b(std::move(b))
{}

std::string BinaryTerm::to_string(int p) const
{
    auto const s = op->to_string(*a, *b);
    return (p/10) < (precedence/10) ? "("+s+")" : s;
}


// An object to represent our target value, and how close we have
// reached so far.
struct Target
{
    const long value;
    double max_badness = 0;

    LiteralTerm best = {"0"};
    long best_badness = value;

    bool done() const { return best_badness < max_badness; }
    double score() const { return 1.*best_badness/value; }

    void update(const Term& t)
    {
        auto badness = std::abs(t.value - value);
        if (badness < best_badness) {
            best = t.as_literal();
            best_badness = badness;
        }
    }

    void update(const TermList& terms)
    {
        for (auto t: terms.terms)
            update(*t);
    }

    void increase_threshold(size_t items_seen)
    {
        // Adjust our acceptance threshold nearer to accepting 0 by
        // 0.01% for every million values seen.
        max_badness += (value - max_badness) * .0001 * std::exp(items_seen / 1000000);
    }
};

// OpenMP reduction for sets
auto merge(auto& a, auto& b)
{
    auto it = a.begin();
    for (auto&& e: b)
        it = a.insert(std::move(e)).first;
    return a;
}
#pragma omp declare reduction(merge: Set: merge<Set>(omp_out, omp_in) ) \
    initializer(omp_priv = Set())


// We run a cascade of pair-wise combination steps, where for each
// input TermList, we generate every possible allowed pairing of its
// terms, and pass that through (in batches) to the next stage.
struct Combiner
{
    std::unique_ptr<Combiner> const next;
    Target& target;
    size_t const max_output_size;
    size_t const nterms;

    Set input = {};
    size_t output_size = 0;

    Combiner(Target& target, size_t nterms, size_t max_output_size)
        : next(nterms > 0 ? std::make_unique<Combiner>(target, nterms-1, max_output_size) : nullptr),
          target(target),
          max_output_size(max_output_size),
          nterms(nterms)
    {}

    inline void insert(const TermList&& t)
    {
        target.update(t);
        if (target.done()) return;
        if (next) {
            if (input.insert(t).second)
                output_size += count_distinct_pairs(t);
            if (output_size >= max_output_size)
                process_input();
        }
    }

    void finish()
    {
        process_input();
        if (next)
            next->finish();
    }

private:
    // Here's where we do the real work - generating and sifting the
    // combined terms for the next pass.
    void process_input()
    {
        if (target.done()) {
            return;
        }

        if (!next)
            return;

        // Move the elements into a vector, so we can parallelize the
        // for-loop.
        auto in = std::vector<Set::value_type>();
        in.reserve(input.size());
        std::move(input.begin(), input.end(), std::back_inserter(in));
        input.clear();
        output_size = 0;

        auto out = Set();

#pragma omp parallel reduction(merge:out)
        {
#pragma omp for
            for (auto it = in.begin();  it < in.end();  ++it)
            {
                try {
                    const auto end = it->terms.cend();
                    for (auto i = it->terms.cbegin();  i != end;  i = std::upper_bound(i, end, *i))
                        for (auto j = i+1;  j != end;  j = std::upper_bound(j, end, *j)) {
                            for (const auto& op: ops) {
                                auto x = op->make_term(*i, *j);
                                if (x) out.insert(replace(*it, i, j, x));
                            }
                        }
                } catch (const std::bad_alloc&) {
                    // Ignore it; process what we've generated so far.
                }
            }
        }

        // Now we're in single-threaded code, we can pass the combined
        // results to the next combiner.
        for (auto& o: out)
            next->insert(std::move(o));

        target.increase_threshold(out.size());
    }


    // Helper methods used by the above

    // An upper bound on the possible number of output TermLists,
    // assuming every combination is valid.  If all n terms in the
    // input list are distinct, that's just ½n(n-1), but if values
    // are duplicated, we need to reduce n to the number of distinct
    // values, and then add in the cases where we pick two of the
    // same value.
    static int count_distinct_pairs(const TermList& terms)
    {
        int distinct = 0, duplicated = 0;
        auto it = terms.terms.begin(),
            end = terms.terms.end();
        while (it != end) {
            ++distinct;
            auto const& v = (*it)->value;
            if (++it == end || (*it)->value != v) continue;
            ++duplicated;
            while (++it != end && (*it)->value == v)
                ;
        }
        return distinct * (distinct - 1) / 2 + duplicated;
    }

    // Create a new TermList from o by replacing elements i and j with
    // newly-created term n.
    static TermList replace(const TermList& o, auto i, auto j, std::shared_ptr<const Term> n)
    {
        std::vector<std::shared_ptr<const Term>> r;
        r.reserve(o.terms.size() - 1);
        auto added = false;
        for (auto k = o.terms.begin();  k != o.terms.end();  ++k) {
            if (!added && (*k)->value < n->value) { r.push_back(n); added = true; }
            if (k != i && k != j) r.push_back(*k);
        }
        if (!added) r.push_back(n);
        return { r, o.target_value };
    }
};


#include <iostream>
std::ostream& operator<<(std::ostream& o, const Term& t)
{
    return o << t.to_string()<< " = " << t.value;
}
std::ostream& operator<<(std::ostream& o, const TermList& t)
{
    auto *sep = "";
    o << "[" << t.badness << "] ";
    for (auto const& x: t.terms)
        o << sep << *x, sep = ", ";
    return o;
}

int main(int argc, char **argv)
{
    if (argc < 3) {
        std::cerr << "Usage: " << argv[0] << " target term ...";
        return EXIT_FAILURE;
    }
    auto target = Target{std::stol(*++argv)};

    std::vector<std::shared_ptr<const Term>> terms;
    while (*++argv) {
        auto t = std::make_shared<LiteralTerm>(*argv);
        target.update(*t);
        terms.push_back(t);
    }
    std::sort(terms.begin(), terms.end());

    // Construct the sieve
    Combiner search{target, terms.size(), 2500000/terms.size() + 1}; // tunable - max set size
    search.insert({terms, target.value});
    search.finish();

    std::cout << "score " << std::fixed << target.score() << " for " << target.best << std::endl;
}

나는 g++ -std=c++17 -fopenmp -march=native -O3(일부 디버깅 및 경고 옵션과 함께) GCC 6.2를 사용하여 이것을 컴파일했다 .


3

파이썬 2.7. 점수 : 1,67039106

그래서 나는 스스로 던지기로 결정했습니다. 너무 멋진 것은 없습니다. 이 프로그램은 숫자를 거꾸로 (큰 순서에서 작은 순서로) 정렬하고 모든 연산자를 순서대로 시도합니다. 타 오르지 만 빠질만한 성능.

프로그램은 다음과 같습니다.

import sys

def score(current,target):
    return abs(1.0-current/float(target))

# Process input and init variables
targetvalue=int(sys.argv[1].strip(','))
numbers=[int(a.strip(',')) for a in sys.argv[2:]]
numbers.sort(reverse=True)
expression='('+str(numbers[0])+')'
currentvalue=nextvalue=testvalue=numbers[0]

# Loop over all values (except the first one)
for value in numbers[1:]:
    # Set multiplication as the reference operator...
    testvalue=currentvalue*value
    minscore=score(testvalue,targetvalue)
    operator="*"
    nextvalue=testvalue

    # then try division (only if result is integer and not divided by zero)...
    if value!=0 and currentvalue%value==0:
        testvalue=currentvalue/value
        if score(testvalue,targetvalue)<minscore:
            operator="/"
            minscore=score(testvalue,targetvalue)
            nextvalue=testvalue

    # and addition...
    testvalue=currentvalue+value
    if score(testvalue,targetvalue)<minscore:
        operator="+"
        minscore=score(testvalue,targetvalue)
        nextvalue=testvalue

    # and subtraction...
    testvalue=currentvalue-value
    if score(testvalue,targetvalue)<minscore:
        operator="-"
        minscore=score(testvalue,targetvalue)
        nextvalue=testvalue

    # and concatenation
    testvalue=int(str(currentvalue)+str(value))
    if score(testvalue,targetvalue)<minscore:
        operator=""
        minscore=score(testvalue,targetvalue)
        nextvalue=testvalue

    # finally check if any operator improces the score. If so, append to the expression
    if score(nextvalue,targetvalue)<score(currentvalue,targetvalue):
        expression='('+expression+operator+str(value)+')'
        currentvalue=nextvalue

print(expression)

모든 테스트 사례의 결과는 다음과 같습니다.

((((((15)14)*13)-12)-11)-10)
((((((((((((999)996)+969)+966)+699)+696)+669)+666)*69)-66)-9)-6)
(((((((((333333333)+333333)+33333)+3333)+333)+33)+3)+3)+3)
(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((5)5)5)5)5)5)5)5)5)+5)+5)+5)+5)+5)+5)+4)+4)+4)+4)+4)+4)+4)+4)+4)+4)+4)+4)+4)+4)+4)+3)+3)+3)+3)+3)+3)+3)+3)+3)+3)+3)+3)+3)+3)+3)+2)+2)+2)+2)+2)+2)+2)+2)+2)+2)+2)+2)+2)+2)+2)+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)
((((((((((((((((((((((((((((((((((((((((((((((199)197)193)+191)+181)+179)+173)+167)+163)+157)+151)+149)+139)+137)+131)+127)+113)+109)+107)+103)+101)+97)+89)+83)*79)-73)-71)-67)-61)-59)-53)-47)-43)-41)-37)-31)-29)-23)-19)-17)-13)-11)-7)-5)-3)/2)
(((((((((((((((((((((((((((((((992)930)870)+812)+756)+702)+650)+600)+552)+506)+462)+420)+380)+342)+306)+272)+240)+210)+182)*156)-132)-110)-90)-72)-56)-42)-30)/20)*12)-6)-2)
((((((((((((((((((((((((((((((((((((((39088169)+24157817)+14930352)+9227465)+5702887)+3524578)+2178309)+1346269)+832040)+514229)+317811)+196418)+121393)+75025)+46368)+28657)+17711)*10946)-6765)-4181)-2584)-1597)-987)-610)-377)-233)-144)-89)-55)-34)-21)-13)-8)-5)-3)/2)+1)+1)
(((((((((((((((((((((50000000)+20000000)+10000000)+5000000)+2000000)+100000)*50000)-20000)-10000)-5000)-2000)-1000)-500)-200)-100)-50)-20)-10)/5)*2)+1)
당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.