파이썬 3, n≈40
def plausible_suffix(l,N):
if sum(l)>N:
return False
pairs = [(N-1-i,l[i]) for i in range(len(l))]
if sum(i*x for i,x in pairs)>N:
return False
num_remaining = N - len(l)
for index, desired_count in pairs:
count = l.count(index)
more_needed = desired_count - count
if more_needed<0:
return False
num_remaining -= more_needed
if num_remaining<0:
return False
return True
plausible_func = plausible_suffix
def generate_magic(N):
l=[0]
while l:
extend = False
if plausible_func(l,N):
if len(l)==N:
yield l[::-1]
else:
extend = True
if extend:
l.append(0)
else:
while l[-1]>=N-2:
l.pop(-1)
if not l:raise StopIteration
l[-1]+=1
n=40 #test parameter
if n>0:
for x in generate_magic(n):
print(n,x)
가능한 목록에 대한 폭 넓은 우선 검색을 수행하여 오른쪽에서 왼쪽으로 항목을 채우고 접미사에서 검색을 중지 할 수없는 접미사에서 검색을 중지하면 다음과 같은 경우에 발생할 수 있습니다.
- 접미사 항목의 합계가 초과합니다
n
(전체 목록의 합계는이어야 함 n
).
i*l[i]
접미사에서 가중 합이 초과됩니다 n
(전체 목록의 합은이어야 함 n
)
- 접미사에 숫자가 여러 번 표시되면 접미사가
- 채워지지 않은 남은 반점의 수가 너무 적어서 더 많은 시간이 필요한 모든 숫자를 설명 할 수 없습니다.
원래 테스트 된 접두사를 왼쪽에서 오른쪽으로 사용했지만 더 느리게 진행되었습니다.
출력 n=30
은 다음과 같습니다.
4 [1, 2, 1, 0]
4 [2, 0, 2, 0]
5 [2, 1, 2, 0, 0]
7 [3, 2, 1, 1, 0, 0, 0]
8 [4, 2, 1, 0, 1, 0, 0, 0]
9 [5, 2, 1, 0, 0, 1, 0, 0, 0]
10 [6, 2, 1, 0, 0, 0, 1, 0, 0, 0]
11 [7, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0]
12 [8, 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0]
13 [9, 2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
14 [10, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
15 [11, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
16 [12, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
17 [13, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
18 [14, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
19 [15, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
20 [16, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
21 [17, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
22 [18, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
23 [19, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
24 [20, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
25 [21, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
26 [22, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
27 [23, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
28 [24, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
29 [25, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
30 [26, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
처음 세 개의 목록을 제외하고 [1, 2, 1, 0], [2, 0, 2, 0], [2, 1, 2, 0, 0]
각 길이의 목록은 정확히 하나이며 n>6
형식이 [n-4, 2, 1, ..., 0, 0, 1, 0, 0, 0]
있습니다. 이 패턴은 적어도 지속됩니다 n=50
. 나는 그것이 영원히 보유하고 있다고 생각하는데,이 경우 엄청난 수의 결과를 출력하는 것은 사소한 일입니다. 그렇지 않더라도 가능한 솔루션에 대한 수학적 이해는 검색 속도를 크게 향상시킵니다.