결정적인 최적화 문제


13

모든 엔트리가 0 또는 1 인 30 x 30 Toeplitz 행렬을 고려하십시오 .

입력 없음

출력 A 30 x 30 Toeplitz 행렬의 모든 항목이 결정자와 함께 0 또는 1입니다.

점수 출력하는 행렬의 결정 요인입니다. 두 사람이 같은 점수를 얻으면 첫 번째 대답이 이깁니다.

지금까지 선두 항목

  • Nick Alger의 Matlab 에서 65,455,857,159,975 (대략 (10 ^ 13.8)
  • isaacg의 Python 에서 65,455,857,159,975 (대략 10 ^ 13.8)
  • 2012rcampion까지 Mathematica 에서 39,994,961,721,988 (약 10 ^ 13.6)
  • Flounderer의 R 에서 39,788,537,400,052 (대략 10 ^ 13.6)
  • Vioz-의 Python 에서 8,363,855,075,832 (대략 10 ^ 12.9)
  • Alex A.의 Julia의 6,984,314,690,903 (약 10 ^ 12.8)

성가신 추가 제약 2015 년 7 월 16 일

가능한 경우 임의의 또는 고정밀 산술을 사용하여 최종 출력 결정자를 계산하여 실제로 무엇인지 확인하십시오 (항상 정수 여야 함). 파이썬에서는 이것이 도움 될 것입니다.


이 문제가 아직 해결되지 않은 것에 놀랐습니다. 회귀 행렬에 대한 답이 알려져 있습니까?
xnor

1
@NickAlger 모든 사람이 라이브러리를 공개적으로 사용할 수있는 경우 사용할 수 있습니다.
orlp

2
@immibis 슬프게도 2 ^ 59가 있습니다.

1
두 개의 독립적 인 방법이 정확히 최대 순환 행렬 결정자를 가진 Toeplitz 행렬을 달성했다는 것이 흥미 롭습니다. 이유에 대한 수학적 직관이 없습니다.이 결정 요인이 바이너리 Toeplitz 행렬에 공통적 인 이유는 무엇입니까?
lirtosiast

1
@ Min_25 내일까지 최대 19를 가져야합니다. 관련 질문 인 Lembik에서 코드 / 값을 얻을 수 있습니다. 휴리스틱 알고리즘을 사용하여 지금까지 다른 두 포스터와 n = 30에 대해 정확히 동일한 값을 초과했습니다. 무작위 배정과 함께 여러 번. 또한 검색이 순환 행렬로 제한되지 않더라도 최대 값에 도달 할 때마다 순환 행렬이 결과로 나타납니다. BTW, 또 다른 당황스러운 사실 : n = 15의 최대 값은 정확히 2 ^ 17입니다.
Reto Koradi

답변:


11

Matlab, 65,455,857,159,975 (10 ^ 13.8159)

이 방법은 큐브 [0,1] ^ 59 내부의 기울기 상승 이며 임의의 초기 추측이 많고 끝에서 반올림하여 모든 것을 0과 1로 만듭니다.

매트릭스:

0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0
0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1
1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1
1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1
1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0
0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1
1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1
1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1
1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0
0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1
1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0
0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0
0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0
0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1
1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0
0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0
0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1
1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0
0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1
1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1
1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0
0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1
1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0
0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0
0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0
0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0
0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1
1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1
1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1
1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0

암호:

% Toeplitz 0-1 determinant optimization

n = 30;
m = n + n-1;

toeplitz_map = @(w) toeplitz(w(n:-1:1), w(n:end));

objective = @(w) det(toeplitz_map(w));

detgrad = @(A) det(A)*inv(A)';

toeplitz_map_matrix = zeros(n^2,m);
for k=1:m
    ek = zeros(m,1);
    ek(k) = 1;
    M = toeplitz_map(ek);
    toeplitz_map_matrix(:,k) = M(:);
end

gradient = @(w) (reshape(detgrad(toeplitz_map(w)),1,n^2)*...
                 toeplitz_map_matrix)';

%check gradient with finite differences
w = randn(m,1);
dw = randn(m,1);
s = 1e-6;
g_diff = (objective(w+s*dw) - objective(w))/s;
g = gradient(w)'*dw;
grad_err = (g - g_diff)/g_diff

warning('off')
disp('multiple gradient ascent:')
w_best = zeros(m,1);
f_best = 0;
for trial=1:100000
    w0 = rand(m,1);
    w = w0;
    alpha0 = 1e-5; %step size
    for k=1:20
        f = objective(w);
        g = gradient(w);
        alpha = alpha0;
        for hh=1:100
            w2 = w + alpha*g;
            f2 = objective(w2);
            if f2 > f
                w = w2;
                break;
            else
                alpha = alpha/2;
            end
        end

        buffer = 1e-4;
        for jj=1:m
            if (w(jj) > 1)
                w(jj) = 1 - buffer;
            elseif (w(jj) < 0)
                w(jj) = 0 + buffer;
            end
        end
    end

    w = round(w);
    f = objective(w);
    if f > f_best
        w_best = w;
        f_best = f;
    end
    disp(trial)
    disp(f_best)
    disp(f)
end

M = toeplitz_map(w_best);

그라디언트 계산 배후의 수학 :

요소 별 내부 곱 (즉, Hilbert-Schmidt 내부 곱) 에서 결정자기울기는 다음과 같이 Riesz 대표 G를 갖습니다.

G = det (A) A ^ (-*).

최적화 변수 (대각선 값)에서 toeplitz 행렬까지의 맵 J는 선형이므로 전체 그래디언트 g는이 두 선형 맵의 구성입니다.

g = (vec (G) * J) ',

여기서 vec ()는 행렬을 가져와 벡터로 펼치는 벡터화 연산자 입니다.

내부 그라디언트 상승 :

이 작업을 마친 후에는 대각선 값 w_0의 초기 벡터를 선택하고 일부 작은 단계 크기의 경우 알파를 반복합니다.

  1. w_proposed = w_k + 알파 * g_k

  2. w_ (k + 1)을 얻으려면 w_proposed를 취하고 [0,1] 외부의 값을 0 또는 1로 자릅니다.

  3. 만족할 때까지 반복 한 다음 모든 것을 0 또는 1로 반올림하십시오.

내 결과는 균일 한 무작위 초기 추측으로 약 80,000 회 시도를 한 후이 결정 요인을 달성했습니다.


OEIS 링크는 Topelitz 행렬의 특별한 경우 인 순환 행렬에 대한 것입니다. 그래도 더 좋습니다.
isaacg

@isaacg 그리고 매우 가능성이 있습니다!

예, 물론 틀 렸습니다. 게시물을 수정하여 수정했습니다.
Nick Alger

1
예, 반복 250에서 해당 값에 도달하여 100000 반복을 유지했습니다. 행렬식 2994003을 갖는 18x18 토플 리츠 행렬을 정의하는 벡터는 [0,0,0,1,0,1,1,1,1,0,1,1,0,0,0,1,0,1,0, 0,0,1,0,1,1,1,1,0,1,1,0,0,0,1,0], 여기서 순서는 왼쪽 하단에서 오른쪽 상단으로 이동합니다.
Nick Alger

2
나는 당신이 새로운 아이디어를 생각해 내고 가장 높은 IIRC를 내놓았을 때 당신에게 승리를 수여했습니다. 아 그리고 이것은 당신의 답변이 math.stackexchange.com/questions/1364471/… 작동하는 이유를 보여줍니다 .

11

Numpy가 포함 된 Python 2, 65,455,857,159,975 ~ = 10 ^ 13.8

이것은 가능한 한 간단하게 언덕을 오르는 것입니다. 정확한 결과를 얻기 위해 SymPy를 사용하여 최종 결정자 계산을 수행했습니다. 이 결정 요인으로 찾은 모든 행렬은 순환입니다.

이 결정과 함께 발견 된 행렬은 왼쪽 아래에서 오른쪽 위의 대각선 값으로 제공됩니다.

01000100101101000011100111011101000100101101000011100111011
01011101110011100001011010010001011101110011100001011010010
01100001000111011101001110100101100001000111011101001110100
01110100111010010110000100011101110100111010010110000100011
01011101110001000011010010111001011101110001000011010010111
01000101100010110100111101110001000101100010110100111101110
01000100101101000011100111011101000100101101000011100111011

첫 번째는 매트릭스입니다.

[[1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1]
 [1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1]
 [1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0]
 [0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1]
 [1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1]
 [1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1]
 [1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0]
 [0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0]
 [0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1]
 [1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1]
 [1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1]
 [1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0]
 [0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0]
 [0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0]
 [0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0]
 [0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1]
 [1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0]
 [0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1]
 [1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1]
 [1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0]
 [0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1]
 [1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0]
 [0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0]
 [0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1]
 [1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0]
 [0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0]
 [0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0]
 [0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1]
 [1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0]
 [0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1]]

암호:

import numpy as np
import sympy as sp
import random
import time
SIZE = 30

random.seed(0)

def gen_diag():
    return [random.randint(0, 1) for i in range(SIZE*2 - 1)]

def diag_to_mat(diag):
    return [diag[a:a+SIZE] for a in range(SIZE-1, -1, -1)]

def diag_to_det(diag):
    matrix = diag_to_mat(diag)
    return np.linalg.det(matrix)

def improve(diag):
    old_diag = diag
    really_old_diag = []
    while really_old_diag != old_diag:
        really_old_diag = old_diag
        for flip_at in range(SIZE * 2 - 1):
            new_diag = old_diag[:]
            new_diag[flip_at] ^= 1
            old_diag = max(old_diag, new_diag, key=diag_to_det)
    return old_diag

overall_best_score = 0
time.clock()
while time.clock() < 500:
    best = improve(gen_diag())
    best_score = diag_to_det(best)
    if best_score > overall_best_score:
        overall_best_score = best_score
        overall_best = best
        print(time.clock(), sp.Matrix(diag_to_mat(overall_best)).det(), ''.join(map(str,overall_best)))


mat = diag_to_mat(overall_best)

sym_mat = sp.Matrix(mat)

print(overall_best)
print(sym_mat.det())

1
이것은 견과류입니다. 잘 했어.
Alex A.

.227은 약간 걱정입니다. 결정자가 실제로 무엇인지 확신 할 수있는 방법이 있다고 생각하십니까?

stackoverflow.com/questions/6876377/… 최종 결정 요인을 평가하는 데 도움이 될 것 같 습니까?

@Lembik 감사합니다-SymPy가 트릭을 수행했습니다.
isaacg

정말 대단해!

10

R, 397885337 400 052

유전자 알고리즘을 시도했지만 무성 생식으로 만 시도했습니다. 도전을 올바르게 이해했으면합니다. 편집 : 약간의 속도를 내고 다른 무작위 시드를 시도했으며 100 세대로 제한했습니다.

    options(scipen=999)

toeplitz <- function(x){
# make toeplitz matrix with first row
# x[1:a] and first col x[(a+1):n]
# where n is the length of x and a= n/2
# Requires x to have even length
#
# [1,1] entry is x[a+1]

N <- length(x)/2
out <- matrix(0, N, N)
out[1,] <- x[1:N]
out[,1] <- x[(N+1):length(x)]
for (i in 2:N){
  for (j in 2:N){
    out[i,j] <- out[i-1, j-1]
  }
} 

out
}

set.seed(1002)

generations <- 100
popsize <- 25
cols <- 60
population <- matrix(sample(0:1, cols*popsize, replace=T), nc=cols)
numfresh <- 5 # number of totally random choices added to population

for (i in 1:generations){

fitness <- apply(population, 1, function(x) det(toeplitz(x)) )
mother <- which(fitness==max(fitness))[1]

population <- matrix(rep(population[mother,], popsize), nc=cols, byrow=T)
for (i in 2:(popsize-numfresh)){
  x <- sample(cols, 1)
  population[i,x] <- 1-population[i,x]
}
for (i in (popsize-numfresh +1):popsize){
  population[i,] <- sample(0:1, cols, replace=T)
}


print(population[1,])
print(fitness[mother])
print(det(toeplitz(population[1,]))) # to check correct

}

산출:

print(population[1, 1:(cols/2)]) # first row
print(population[1, (cols/2+1):(cols)]) # first column (overwrites 1st row)

to <- toeplitz(population[1,])

for (i in 1:(cols/2)) cat(to[i,], "\n")

1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 
0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 
1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 
0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 
0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 
0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 
1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 
1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 
1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 
1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 
0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 
1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 
1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 
1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 
0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 
0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 
0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 
0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 
1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 
0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 
0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 
1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 
0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 
0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 
0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 
0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 
1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 
0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 
1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 
1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 

이것은 매우 좋군요. 현재 먼 길을 이기고 있습니다.

더 이상 :)

3

줄리아, 6,984,314,690,902.998

이것은 1,000,000 개의 랜덤 Toeplitz 행렬을 구성하고 결정 요인을 확인하여 최대 발생을 기록합니다. 바라건대 누군가가 우아한 분석 솔루션을 제시 할 것이지만 그 동안 ...

function toeplitz(a, b)
    n = length(a)
    T = Array(Int, n, n)
    T[1,:] = b
    T[:,1] = a
    for i = 2:n
        T[i,2:n] = T[i-1,1:n-1]
    end
    T
end

d = 0
A = Any[]

for i = 1:1000000
    # Construct two random 0,1 arrays
    r1 = rand(0:1, 30)
    r2 = rand(0:1, 30)

    # Compute the determinant of a toeplitz matrix constructed
    # from the two random arrays
    D = det(toeplitz(r1, r2))

    # If the computed determinant is larger than anything we've
    # encountered so far, add it to A so we can access it later
    D > d && begin
        push!(A, (D, r1, r2))
        d = D
    end
end

M,N = findmax([i[1] for i in A])

println("Maximum determinant: ", M, "\n")
println(toeplitz(A[N][2], A[N][3]))

여기서 출력을 볼 수 있습니다 .


결정 요인 계산이 얼마나 정확한지 궁금합니다. 기본 계산이 배정도로 수행되었다고 생각합니까? 소수점 뒤의 자릿수가 .998이므로 가장 가까운 정수가 여전히 올바른 결정 인자가 될 가능성이 큽니다. 일반적으로, 예를 들어 표준 LR 분해에 기초한 범용 행렬식 계산이 상당히 커지면 이러한 행렬에 부동 소수점 정밀도 문제가 발생하기 시작합니다.
Reto Koradi

@RetoKoradi LU 분해를 사용하여 결정자를 얻는 것처럼 보입니다.
Alex A.

3

Mathematica, 39,994,961,721,988 (10 ^ 13.60)

간단한 시뮬레이션 어닐링 최적화 방법; 아직 최적화 나 조정이 없습니다.

n = 30;
current = -\[Infinity];
best = -\[Infinity];
saved = ConstantArray[0, {2 n - 1}];
m := Array[a[[n + #1 - #2]] &, {n, n}];
improved = True;
iters = 1000;
pmax = 0.1;
AbsoluteTiming[
 While[improved || RandomReal[] < pmax,
   improved = False;
   a = saved;
   Do[
    Do[
      a[[i]] = 1 - a[[i]];
      With[{d = Det[m]},
       If[d > best,
          best = d;
          current = d;
          saved = a;
          improved = True;
          Break[];,
          If[d > current || RandomReal[] < pmax (1 - p/iters),
           current = d;
           Break[];,
           a[[i]] = 1 - a[[i]];
           ]
          ];
        ;
       ],
      {i, 2 n - 1}];,
    {p, iters}];
   ];
 ]
best
Log10[best // N]
a = saved;
m // MatrixForm

샘플 출력 :

{20.714876,Null}
39994961721988
13.602
(1  1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0
0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0
0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0
0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0
0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1
1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0
0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0
0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0
0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0
0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1
1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1
1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0
0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1
1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1
1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0
0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1
1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1
1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1
1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0
0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1
1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1
1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0
0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0
0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0
0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0
0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1
1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0
0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1
1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1
1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1

)

1

파이썬 2, 8 363 855 075 832

이것은 매우 기본적이고 거의 존재하지 않는 전략을 가지고 있습니다.

from scipy import linalg

start = 2**28
mdet  = 0
mmat  = []
count = 0
powr  = 1
while 1:
 count += 1
 v = map(int,bin(start)[2:].zfill(59))
 m = [v[29:]]
 for i in xrange(1,30):
     m += [v[29-i:59-i]]
 d = 0
 try: d = linalg.det(m, check_finite=False)
 except: print start
 if d > mdet:
     print d
     print m
     mdet = d
     mmat = m
     start += 1
     powr = 1
 else:
     start += 2**powr
     powr += 1
     if start>(2**59-1):
         start-=2**59-1
         powr = 1
 if count%10000==0: print 'Tried',count

~ 5,580,000 회 시도 후에 찾은 최고의 행렬은 다음과 같습니다.

1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0
1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1
1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0
0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1
1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1
0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0
1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1
0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0
0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0
1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1
1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0
0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0
0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0
0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0
0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0
0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0
1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1
0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1
1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1
1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0
1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1
1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1
1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1
1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0
1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1
0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0
1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1

아직 실행 중 ...

당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.