⊥1↓⍧|/⌽(+/g[⍸⌽+/⊤⎕]),↑,\⌽g←(2+/,)⍣38⍨⍳2
온라인으로 사용해보십시오!
길이 2의 인수 하나를 사용하여 전체 프로그램으로 변경되었으며 피보나치 생성기도 변경되었습니다. 많은 아이디어를 주신 @ngn에게 감사합니다.
로 평가 ⎕IO←0
되도록 사용 ⍳2
합니다 0 1
.
피보나치 생성기 (신규)
마지막 두 숫자는 정확하지 않지만 프로그램의 출력은 변경되지 않습니다.
(2+/,)⍣38⍨⍳2
→ 0 1 ((2+/,)⍣38) 0 1
Step 1
0 1 (2+/,) 0 1
→ 2+/ 0 1 0 1
→ (0+1) (1+0) (0+1) ⍝ 2+/ evaluates sums for moving window of length 2
→ 1 1 1
Step 2
0 1 (2+/,) 1 1 1
→ 2+/ 0 1 1 1 1
→ 1 2 2 2
Step 3
0 1 (2+/,) 1 2 2 2
→ 2+/ 0 1 1 2 2 2
→ 1 2 3 4 4
제켄 도르프에서 일반 (부분)으로
⍸⌽+/⊤⎕
⎕ ⍝ Take input from stdin, must be an array of 2 numbers
⊤ ⍝ Convert each number to base 2; each number is mapped to a column
+/ ⍝ Sum in row direction; add up the counts at each digit position
⌽ ⍝ Reverse
⍸ ⍝ Convert each number n at index i to n copies of i
g←1↓(1,+\⍤,)⍣20⍨1
{⊥1↓⍧|/⌽⍵,↑,\⌽g}+⍥{+/g[⍸⌽⊤⍵]}
온라인으로 사용해보십시오!
이전 답변의 1 부에서 피보나치 수를 재사용하도록 변경되었습니다. 또한 중복 1을 삭제하여 다른 위치에 일부 바이트를 저장하십시오.
1 부 (신규)
{+/g[⍸⌽⊤⍵]}
⊤⍵ ⍝ Argument to binary digits
⍸⌽ ⍝ Reverse and convert to indices of ones
g[ ] ⍝ Index into the Fibonacci array of 1,2,3,5,...
+/ ⍝ Sum
{⊥1↓¯1↓⍧|/⌽⍵,↑,\⌽(1,+\⍤,)⍣20⍨1}+⍥({+∘÷⍣(⌽⍳≢⊤⍵)⍨1}⊥⊤)
온라인으로 사용해보십시오!
작동 원리
Zeckendorf에서는 APL이 어레이의 개별 요소에 대한 작업으로 알려져 있지 않기 때문에 멋진 알고리즘을 추가하지 않습니다. 대신 Zeckendorf의 두 입력을 일반 정수로 변환하고 추가 한 다음 다시 변환했습니다.
제 1 부 : Zeckendorf에서 일반 정수로
{+∘÷⍣(⌽⍳≢⊤⍵)⍨1}⊥⊤ ⍝ Zeckendorf to plain integer
⊤ ⍝ Convert the input to array of binary digits (X)
{ ( ≢⊤⍵) } ⍝ Take the length L of the binary digits and
⌽⍳ ⍝ generate 1,2..L backwards, so L..2,1
{+∘÷⍣( )⍨1} ⍝ Apply "Inverse and add 1" L..2,1 times to 1
⍝ The result looks like ..8÷5 5÷3 3÷2 2 (Y)
⊥ ⍝ Mixed base conversion of X into base Y
Base | Digit value
-------------------------------
13÷8 | (8÷5)×(5÷3)×(3÷2)×2 = 8
8÷5 | (5÷3)×(3÷2)×2 = 5
5÷3 | (3÷2)×2 = 3
3÷2 | 2 = 2
2÷1 | 1 = 1
2 부 : 두 개의 일반 정수 추가
+⍥z2i ⍝ Given left and right arguments,
⍝ apply z2i to each of them and add the two
제 3 부 : 합을 다시 Zeckendorf로 변환
"입력과 출력의 Zeckendorf 표현이 31 비트에 적합하다고 가정 할 수 있습니다."
{⊥1↓¯1↓⍧|/⌽⍵,↑,\⌽(1,+\⍤,)⍣20⍨1} ⍝ Convert plain integer N to Zeckendorf
(1,+\⍤,)⍣20⍨1 ⍝ First 41 Fibonacci numbers starting with two 1's
⌽ ⍝ Reverse
↑,\ ⍝ Matrix of prefixes, filling empty spaces with 0's
⌽⍵, ⍝ Prepend N to each row and reverse horizontally
|/ ⍝ Reduce by | (residue) on each row (see below)
⍧ ⍝ Nub sieve; 1 at first appearance of each number, 0 otherwise
1↓¯1↓ ⍝ Remove first and last item
⊥ ⍝ Convert from binary digits to integer
피보나치 생성기
(1,+\⍤,)⍣20⍨1
→ 1 ((1,+\⍤,)⍣20) 1 ⍝ Expand ⍨
→ Apply 1 (1,+\⍤,) x 20 times to 1
First iteration
1(1,+\⍤,)1
→ 1,+\1,1 ⍝ Expand the train
→ 1,1 2 ⍝ +\ is cumulative sum
→ 1 1 2 ⍝ First three Fibonacci numbers
Second iteration
1(1,+\⍤,)1 1 2
→ 1,+\1,1 1 2 ⍝ Expand the train
→ 1 1 2 3 5 ⍝ First five Fibonacci numbers
⍣20 ⍝ ... Repeat 20 times
이것은 피보나치 수의 속성에서 비롯됩니다. 피보나치가 다음과 같이 정의 된 경우
F0=F1=1;∀n≥0,Fn+2=Fn+1+Fn
그때
∀n≥0,∑i=0nFi=Fn+2−1
그래서 누적 합계 1,F0,⋯,Fn (1이 앞에 붙은 피보나치 배열)은 F1,⋯,Fn+2. 그런 다음 인덱스 0으로 시작하는 일반적인 피보나치 배열을 얻기 위해 1을 다시 추가합니다.
피보나치에서 제켄 도르프까지
Input: 7, Fibonacci: 1 1 2 3 5 8 13
Matrix
0 0 0 0 0 0 13 7
0 0 0 0 0 8 13 7
0 0 0 0 5 8 13 7
0 0 0 3 5 8 13 7
0 0 2 3 5 8 13 7
0 1 2 3 5 8 13 7
1 1 2 3 5 8 13 7
Reduction by residue (|/)
- Right side always binds first.
- x|y is equivalent to y%x in other languages.
- 0|y is defined as y, so leading zeros are ignored.
- So we're effectively doing cumulative scan from the right.
0 0 0 0 0 0 13 7 → 13|7 = 7
0 0 0 0 0 8 13 7 → 8|7 = 7
0 0 0 0 5 8 13 7 → 5|7 = 2
0 0 0 3 5 8 13 7 → 3|2 = 2
0 0 2 3 5 8 13 7 → 2|2 = 0
0 1 2 3 5 8 13 7 → 1|0 = 0
1 1 2 3 5 8 13 7 → 1|0 = 0
Result: 7 7 2 2 0 0 0
Nub sieve (⍧): 1 0 1 0 1 0 0
1's in the middle are produced when divisor ≤ dividend
(so it contributes to a Zeckendorf digit).
But the first 1 and last 0 are meaningless.
Drop first and last (1↓¯1↓): 0 1 0 1 0
Finally, we apply base 2 to integer (⊥) to match the output format.