MATLAB, 1960bps
업데이트 된 시도는 다음과 같습니다.
fs = 44100; %44.1kHz audio rate
fc = 2450; %2.45kHz carrier - nice fraction of fs!
fsym = fc/5; %symbol rate
tmax = 4; %about 4 seconds worth
preamblesyms = 6;
t = 1/fs:1/fs:(tmax+preamblesyms/fsym);
symbols = preamblesyms+fsym*tmax;
symbollength = length(t)/symbols;
bits = symbols*3;
bitstream = [zeros(1,preamblesyms*3),rand(1,bits-preamblesyms*3)>0.5]; %Add a little preamble of 18 bits
data = bin2dec(char(reshape(bitstream,3,symbols)'+'0'))';
greycode = [0 1 3 2 6 7 5 4];
%Encode the symbols using QAM8 - we use effectively grey code so that
%adjacent symbols in the constellation have only one bit difference
%(minimises error rate)
encoded = zeros(2,symbols);
encoded(1,data==1) = 1/sqrt(2);
encoded(1,data==3) = 1;
encoded(1,data==2) = 1/sqrt(2);
encoded(1,data==7) = -1/sqrt(2);
encoded(1,data==5) = -1;
encoded(1,data==4) = -1/sqrt(2);
encoded(2,data==0) = 1;
encoded(2,data==1) = 1/sqrt(2);
encoded(2,data==2) = -1/sqrt(2);
encoded(2,data==6) = -1;
encoded(2,data==7) = -1/sqrt(2);
encoded(2,data==4) = 1/sqrt(2);
%Modulate onto carrier
carrier = [sin(2*pi*fc*t);cos(2*pi*fc*t)];
signal = reshape(repmat(encoded(1,:)',1,symbollength)',1,[]);
signal(2,:) = reshape(repmat(encoded(2,:)',1,symbollength)',1,[]);
modulated = sum(signal.*carrier)';
%Write out an audio file
audiowrite('audio.wav',modulated,fs);
%Wait for the user to run through the POTS simulator
input('');
%Read in the filtered data
filtered=audioread('audio.pots-filtered.wav')';
%Recover the two carrier signals
preamblecos = filtered(symbollength+1:symbollength*2);
preamblesin = filtered(symbollength+1+round(symbollength*3/4):symbollength*2+round(symbollength*3/4));
%Replicated the recovered carriers for all symbols
carrierfiltered = [repmat(preamblesin,1,symbols);repmat(preamblecos,1,symbols)];
%Generate a demodulation filter (pass up to 0.66*fc, stop at 1.33*fc
%(really we just need to kill everything around 2*fc where the alias ends up)
d=fdesign.lowpass('Fp,Fst,Ap,Ast',0.05,0.1,0.5,60);
Hd = design(d,'equiripple');
%Demodulate the incoming stream
demodulated = carrierfiltered .* [filtered;filtered];
demodulated(1,:)=filtfilt(Hd.Numerator,1,demodulated(1,:));
demodulated(2,:)=filtfilt(Hd.Numerator,1,demodulated(2,:));
%Split signal up into bit periods
recovereddemodulated=[];
recovereddemodulated(1,:,:) = reshape(demodulated(1,:),symbollength,symbols);
recovereddemodulated(2,:,:) = reshape(demodulated(2,:),symbollength,symbols);
%Extract the average level for each bit period. Only look at the second
%half to account for slow rise times in the signal due to filtering
recoveredsignal=mean(recovereddemodulated(1,round(symbollength/2):symbollength,:));
recoveredsignal(2,:)=mean(recovereddemodulated(2,round(symbollength/2):symbollength,:));
%Convert the recovered signal into a complex number.
recoveredsignal=recoveredsignal(2,:) + 1j*recoveredsignal(1,:);
%Determine the magnitude and angle of the symbol. The phase is normalised
%to pi/4 as that is the angle between the symbols. Rounding this to the
%nearest integer will tell us which of the 8 phases it is closest to
recoveredphase = round(angle(recoveredsignal)/(pi/4));
recoveredphase = mod(recoveredphase+8,8)+1; %Remap to an index in the grey code vector.
%Determine the symbol in the QAM8 constellation
recoveredencoded=greycode(recoveredphase);
recoveredencoded(1:preamblesyms)=0; %Assume the preamble is correct for comparison
%Turn it back in to a bit stream
bitstreamRecovered = reshape(dec2bin(recoveredencoded)'-'0',1,[]);
%And check if they are all correct...
if(all(bitstream==bitstreamRecovered))
disp(['Woop, ' num2str(fsym*4) 'bps']);
else
error('Its corrupt Jim.');
end
나의 첫 시도 이후, 나는 조금 놀았다. 이제 코사인 파 만 포함하는 작은 프리앰블 (처음에는 18 비트 기간이지만 더 짧을 수 있음)이 있습니다. 나는 이것을 추출하고 복조를 위해 올바르게 위상 정현파와 코사인 반송파를 만들기 위해 복제했습니다. 매우 짧은 프리앰블이므로 지침에 따라 비트 레이트로 계산하지 않았습니다.
또한 첫 번째 시도 이후 QAM8 성상도를 사용하여 2 대신 기호 당 3 비트를 달성했습니다. 이는 전송 속도를 효과적으로 두 배로 늘립니다. ~ 2.4kHz 반송파를 사용하면 1960bps를 달성 할 수 있습니다.
또한 필터링으로 인한 느린 상승 시간의 영향을받지 않도록 기호 감지 기능을 개선했습니다. 기본적으로 각 비트주기의 후반 만 상승 시간의 영향을 제거하기 위해 평균화됩니다.
여전히 Shannon-Hartley 이론 의 40kbps 이론적 채널 대역폭 근처 (30dB SNR 가정)
끔찍한 소리 를 좋아하는 사람들을 위해 , 이것은 새로운 항목입니다.
누군가 관심이 있다면 이전 960bps 항목입니다.