등가 관계는 문제를 다룹니다 (그래프 이론에서)


10

유한 정점 세트에 대한 등가 관계는 분리되지 않은 파편의 결합 인 무 방향 그래프로 나타낼 수 있습니다. 정점 세트는 요소를 나타내고 모서리는 두 요소가 동일 함을 나타냅니다.

I 그래프가있는 경우 그래프 G (1) , ... , G의 k는 , 우리는 말할 G가 적용되는 G (1) , ... , G의 K 의 에지들의 집합 경우 G는 가장자리의 집합의 합집합 같다 G 1 , , G k . G 1 , , G k 의 모서리 세트는 분리 될 필요가 없습니다. 무 방향 그래프 GGG1,,GkG1,,케이1,,케이1,,케이 한정된 수의 동등성 관계에 의해 다룰 수 있습니다 (즉, 분리 된 cliques union).

몇 가지 질문이 있습니다.

  • 그래프 를 포함하는 데 필요한 최소 등가 관계 수에 대해 무엇을 말할 수 있습니까?
  • 이 최소값을 어떻게 계산할 수 있습니까?
  • 의 명시 적 최소 커버 , 즉 크기가 최소이고 G 를 커버하는 등가 관계 세트를 어떻게 계산할 수 있습니까?
  • 이 문제에 파티션 논리 ( 서브셋 논리의 이중)를 제외한 다른 응용 프로그램이 있습니까?
  • 이 문제의 이름이 잘 정립되어 있습니까?

주석으로 표시된 다양한 오해를 감안할 때 다음은 이러한 개념을 설명하는 그림입니다. 이해하기 쉬운 용어 ( "커버", "동등한 관계", "분할 된 분리 된 결합"및 "분리되지 않은"가장자리 세트의 결합) 대신에, 자유롭게 알려 주시기 바랍니다.

다음은 그래프와이를 포함하는 하나의 동등성 관계에 대한 그림입니다. 그래프와 그것을 다루는 하나의 동등성 관계

다음은 그래프와이를 다루는 두 개의 등가 관계에 대한 그림입니다. 그래프와 그것을 다루는 두 등가 관계
최소한 두 개의 등가 관계가 필요하다는 것은 명백합니다.

다음은 그래프와이를 다루는 3 개의 동등성 관계에 대한 그림입니다. 그래프와 그것을 다루는 3 개의 등가 관계
최소한 3 개의 동등성 관계가 필요하다는 것은 분명하지 않습니다. 서브셋 로직의 듀얼의 Lemma 1.9를 사용하면 이것이 사실임을 알 수 있습니다. 이 질문을 두 가지 이상의 입력으로 낸드 작업으로 일반화하는 것이이 질문의 동기였습니다.


1
잘 알려진 NP-Complete 문제입니다. en.wikipedia.org/wiki/Clique_cover_problem
gardenhead

@StephenBly 어쩌면 잘 알려진 문제 일지 모르지만 wikipedia 링크는 실제로 도움이되지 않습니다. 이 기사에서는 정점 표지 문제에 대해 이야기하지만 여기서 질문은 모서리 표지 문제와 관련이 있습니다. 또한 동등성 관계는 클릭이 아니라 분리 된 결합의 결합입니다.
토마스 Klimpel

동등성 관계가 분리 된 파벌 조합이라는 것은 무엇을 의미합니까? 정점 세트는 요소를 나타내고 모서리는 두 요소가 동일 함을 나타냅니다. 그것이 당신이 사용하고있는 표현이 아니라면 그것을 명확히해야합니다.
gardenhead

3
11

3
@YuvalFilmus이 질문은 조합이 주어진 그래프를 포함하는 것이 아니라 주어진 그래프의 가장 가까운 관계인 조합이 최소 인 등가 관계 수에 대해 묻습니다.
David Richerby 2016 년

답변:


4

eq()cc()

두 숫자의 정확한 값 또는 상한이 알려진 특수 그래프 클래스가 있습니다. 일반적으로, 내가 아는 한, 최고의 한계는 Alon에 의해 주어진다 [1] :

로그2로그2eq()cc()2이자형2(Δ+1)2ln,

Δ2/4

eq()


[1] Alon, Noga. "최소 등가 관계 수로 그래프 표시." Combinatorica 6.3 (1986) : 201-206.

[2] Blokhuis, Aart 및 Ton Kloks. "분할 그래프의 수를 포함하는 동등성에." 정보 처리 문자 54.5 (1995) : 301-304.

[3] Kučera, Luděk, Jaroslav Nešetřil 및 Aleš Pultr. "3 차원의 복잡성과 그래프의 일부 관련 에지-커버링 특성" 이론적 컴퓨터 과학 11.1 (1980) : 93-106.


1
[1]의 Corollary 1.3은 내가 필요한 것입니다 (경로의 보완에 적용되는 버전에서). 이제 나는 더 이상 파티션에서 "(A, B, C, ...)가 (Z, Y, X, ...)"(연속 미적분학의 결과)를 암시하는 것에 대한 논문을 쓰지 않겠다는 변명의 여지가 없다 논리 및 유사한 비 고전 논리. 그러나 나는 적어도 반년 동안 그것을 쓰지 않을 것이라고 생각합니다. 그리고 아마도 그동안 새로운 변명을 찾을 수도 있습니다.
Thomas Klimpel

@ThomasKlimpel 대단하다! (당신이 새로운 변명을 찾을 수는 있지만 이것이 도움이되었다는 사실은 아닙니다 :-))
Juho

6

이러한 문제의 이름을 모르지만이 문제가 NP-hard임을 알 수 있습니다.

삼각형 무료 그래프의 경우 모든 동등성 클래스가 일치해야합니다. 그래프를 덮는 최소 동등성 클래스 수는 그래프의 색채 지수와 같습니다.

이 기사 에 따르면 , 삼각형 무료 그래프에 대한 색도 지수를 찾는 것은 NP- 완료입니다.

당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.