이 제곱근 바운드 찾기 알고리즘에서 루프 불변 값을 어떻게 얻습니까?


10

원래 math.SE에 있지만 대답하지 않았습니다 .

다음 알고리즘을 고려하십시오.

u := 0
v := n+1;
while ( (u + 1) is not equal to v) do
   x :=  (u + v) / 2;
   if ( x * x <= n) 
     u := x;
   else
     v := x;
   end_if
end_while 

여기서 u, v 및 n은 정수이고 나누기 연산은 정수 나누기입니다.

  • 알고리즘에 의해 계산되는 것을 설명하십시오.
  • 파트 I에 대한 답을 알고리즘의 사후 조건으로 사용하여 루프 불변을 설정하고 알고리즘이 종료되고 올바른지 보여줍니다.

0u2n<(u+1)20u2n<v2,u+1vu+1=v... 분명히 그렇지 않습니다. 그래서 나는 사후 조건과 불변성을 어떻게 얻었는지 궁금합니다. 또한 사후 조건을 사용하여 사전 조건을 얻는 방법에 대해 궁금합니다.


Hoare 논리에 대해 잘 알고 있으며 이에 대한 답변을 기대하십니까?
Raphael

답변:


8

Gilles는 일반적인 기술이 흥미로운 관찰을 위해 낚시를하는 것입니다.

이 경우 프로그램이 다음과 같은 형태이기 때문에 이진 검색의 인스턴스라는 것을 알 수 있습니다.

while i + 1 != k
  j := strictly_between(i, k)
  if f(j) <= X then i := j
  if f(j) > X then k := j

그런 다음 특정 플러그 단지 f, X... 이진 검색에 대한 일반적인 불변으로. Dijkstra는 바이너리 검색에 대한 좋은 토론을 가지고 있습니다.


7

u+1=vbreaku+1vu=[this interesting thing]v=[this interesting thing]

이제 다른 흥미로운 속성을 찾기 위해 일반적인 레시피는 없습니다. 사실, 루프 불변량을 찾는 일반적인 레시피가 없다는 공식적인 의미가 있습니다. 당신이 할 수있는 최선의 방법은 경우에 따라 작동하거나 일반적으로 흥미로운 관찰을 위해 낚시를하는 것입니다 (더 경험이 많을수록 더 잘 작동합니다).

몇 가지 값으로 반복을 몇 번 반복하면 n

  • u(u+v)/2
  • v(u+v)/2

uvuvn+10uvn+1

uvuvx=u=vuvu<vuvu+1v

v=u+1u2n<v20u2nnn

  • uxv
  • x2nuxu2nv
  • x2>nvxn<v2u

u2n<v2

u2n(u+1)2>nun 가장 가까운 정수로 내림.


"그래서 알고리즘이 올바른지 증명하기 위해 u와 v가 동일하다는 것을 증명해야합니다."이 문장에 "not"이 누락 된 것 같습니다.
sepp2k 2016 년

@ KenLi 이것은 스택 교환 의미에서 귀하의 질문이므로, 당신이 원하는 특별한 개선이 있습니까?
Gilles 'SO- 악한 중지'
당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.