결정 론적 유한 오토 마톤 (DFA)은 모든 정규 언어 만 수용 할 수있는 상태 머신 모델입니다. DFA는 각 상태가 입력 알파벳의 모든 요소에 대해 약간의 전환을 제공해야하는 방식으로 정의 될 수 있으며 일반적으로 정의 될 수 있습니다. 즉, 전이 함수 는 (총) 함수 여야합니다.
우리가 DDFA (Doublely Deterministic Finite Automaton)라고 부르는 것을 상상해보십시오. DFA와 유사하게 정의되며 두 가지 예외가 있습니다. 첫째, 가능한 모든 입력 심볼마다 하나의 상태에서 다른 상태로 전환하는 대신 두 개의 개별 상태로 연결되어야합니다. 둘째, 문자열을 허용하려면 모든 잠재적 경로가 다음 조건 중 하나를 만족해야합니다.
- DDFA를 통한 모든 잠재적 경로는 수용 상태로 이어집니다 (이를 유형 1 DDFA라고합니다).
- DDFA를 통한 모든 잠재적 경로는 동일한 수락 상태로 이어집니다 (이를 유형 -2 DDFA라고합니다).
이제 내 질문에 :
유형 1 및 유형 2 DDFA는 어떤 언어를 허용합니까? 구체적으로, , L ( D D F A ) = L ( D F A ) 또는 L ( D D F A ) ⊊ L ( D F) A ) ? 경우에서 L ( D D F ) , L ( D D)에 대한 쉬운 설명이 있습니까? ?
너무 복잡하지 않은 증거 (또는 적어도 적당히 살해진 스케치)는 높이 평가됩니다.