문제 가 NP-hard 라고 생각합니다 . NP-hard 문제 와 밀접한 관련 이있는 문제 를 변환하는 방법을 보여 드리겠습니다 . (예, 이것은 모두 모호합니다. 기본적으로 내 일반적인 접근 방식이 정확하다고 생각하지만 현재 진행할 수 없습니다.)TUT
먼저, 문제 는 다음과 같이 재구성 될 수 있습니다.TUT
질문 집합이 주어 크기의 K , 세트 N 서브 세트 F Q ⊆ P ( Q ) 와 정수 (C)는 , 시퀀스가 존재하지 않는 Σ를 : ⟨ S 1 , ... , S K ⟩ 모두 같은 것을, I ∈ { 1 , … , k } :QknFQ⊆P(Q)CΣ:⟨S1,…,Sk⟩i∈{1,…,k}
- 및 | S 전 | = i ; 과Si⊆Q|Si|=i
- 모든 j > i에 대한 S i ⊂ S j ; 과Si⊂Sjj>i
- ?∑ki=1|{q∈FQ∣q⊈Si}|≤C
세트 는 설명 될 첫 번째 i 질문을 나타냄에 유의한다 . 조건 1과 2는 이러한 해석에 따라 하위 집합이 잘 구성되어 있는지 확인합니다. 조건 3은 매 순간 남지 않은 학생의 수를 계산하므로 실제로 모든 학생의 총 대기 시간까지 합산됩니다.Sii
Now, we restrict the size of the subsets in FQ to 2, so we can represent these subsets as edges on a graph where the vertices are the elements from Q. (A hardness result for this special case is sufficient for hardness of the general problem)
Now, the problem of minimizing |{q∈FQ∣q⊈Si}| for a single i (this is essentially ignoring condition 2) is equivalent to the following problem, which I dub 'Double max k-vertex-cover':
G=(V,E)ktV′⊆V of size at most k such that the set {(u,v)∈E∣u∈V′∧v∈V′} has a size of at least t?
This problem is NP-hard, since k-clique is a special case of this problem, as this answer shows. However, this is not sufficient to prove TUT to be NP-hard, since we need to find the maximum for every i, while respecting condition 2. This conditions are not satisfied by every sequence Σ that satisfies only condition 1 and 3: consider the graph on 7 vertices with two disjoint cycles, one of size 4, the other size 3. For i=3, selecting all vertices in the 3-cycle gives the maximum, while selecting all vertices of the 4-cycle is optimal for i=4.
It seems that condition 2 makes the problem even harder and most certainly not easier, which means TUT should be NP-hard, but I haven't seen a method to formally prove this.
So, to summarize, I have reduced the question to the following:
- Is it possible to include condition 2 to complete the hardness proof for TUT?
Side note: The formulation I gave makes it tempting to try an iterative algorithm which finds |{q∈FQ∣q⊈Si}| under condition 2 from i=1…k, by finding all maximum 'extenstions' of all found maximum sets for i−1. This does not lead to an efficient algorithm, as the amount of maximum sets at a single iteration may be exponential in k. Additionally, I have not seen a method to determine whether a subset for some i would eventually become the 'global' maximum to prevent checking an exponential amount of subsets.