내 의견에 대해 자세히 설명하겠습니다. 첫째, 이것은 불일치와 유사하지만 물론 여러 가지면에서 다릅니다. 세트 시스템 의 시스템의 불일치는 . 하자 나타낸다. 정의는 당신이 가 얼마나 많은 세트인지 알고 불일치는 최악의 경우 가 얼마나 큰지 묻습니다 . 빠른 소개를 위해 내 서기 메모 가 도움이 될 수 있습니다. Chazelle에는 많은 세부 사항이 담긴 멋진 책 이 있습니다.mS1,…,Sm⊆{1,…n}=[n]minσ:[n]→{±1}maxj|∑i∈Sjσ(i)|σ(Sj)=|∑i∈Sjσ(i)|σ(Sj)σ(Sj)
내 의견과 같이 일 때 쉬운 확률 론적 하한을 위해 그래프 순서가 인 그래프 사용 하면 무작위로 균일하게 선택할 수 있습니다 의 모든 시퀀스에서 ( 는 독립적이지 않지만이 경우에도 Chernoff 바운드를 증명할 수 있어야합니다). 우리는 을 가지며 Chernoff 경계에 의해 일정한 상수 . 따라서 입니다. 그래서 약간의s>n/2G=([n],E)δ1,…,δnσs 1σiE[ξi(σ)]=δis/nPr[ξi(σ)<0]≤exp(−Cδi(s/n−1/2)2)CE[N(σ)]≥n−∑iexp(−Cδi(s/n−1/2)2)σ 그것은이 한계를 달성합니다.
편집 : 당신이 사건에 관심이있는 것 같습니다 . 이전 단락과 같은 방식으로 를 무작위로 봅시다 . 대체없이 샘플링을 위해 중앙 한계 정리의 버전을 사용하면 ( 는 그래프의 꼭짓점에서 대체하지 않고 크기 의 샘플입니다 ), 는 평균을 가진 가우스처럼 행동 한다는 것을 보여줄 수 있어야합니다 및 에 대한 분산 이므로 일부 및 C 중심 극한 정리에서 에러 파라미터. 이어야합니다s<n/2σσsξi(σ)δi(2s/n−1)δiPr[ξi(σ)≥0]=exp(−Cδi(2s/n−1)2)±η(n)η(n)nη(n)=o(n) 취할 수 있습니다 .N(σ)≥∑iexp(−Cδi(2s/n−1)2)−o(n)
면책 조항 : 가 상수 / 작거나 이 매우 가까운 경우에만 의미가 있습니다. 또한 계산은 다소 추론 적이며 매우 신중하게 수행되지 않습니다.δis/nn/2