이론적 인 컴퓨터 과학에서 열린 문제를 해결하기위한 대규모 온라인 협업


11

Polymath 프로젝트에서 대규모 그룹은 공개 된 문제에 대해 연구합니다.

이 프레임 워크에서 어떤 종류의 문제가 가장 잘 작동합니까?
이론적 인 컴퓨터 과학에서 polymath 프로젝트에 대한 좋은 후보자가 있습니까?
Polymath 프로젝트가 수학의 다른 영역과 비교하여 이론적 인 컴퓨터 과학에서 성공하기 어렵게 만드는 장애물이 있습니까?


9
Polymath4는 이미 TCS 질문에 중점을 두었습니다. 주어진 범위에서 소수를 찾기 위해 더 빠른 결정 론적 알고리즘을 설계합니다. Polymath3는 단순 알고리즘 분석과 밀접한 관련이있는 다항식 허쉬 추정에 중점을 두었습니다. 요점은, TCS는 수학이며, TCS polymath 프로젝트는 다른 polymath 프로젝트와 다르지 않아도됩니다.
Sasho Nikolov

1
좋은 생각이야! 그러나 stackexchange fmt에 너무 적합하지 않습니다. 그러나 대화방 은 자연스럽고 효과적인 장소가 될 수 있으며 이러한 목적 중 일부에 이미 사용되었습니다. 예를 들어 deolalikar 증거 검토 등의일부 TCS 그룹 작업이 있었습니다 . 온라인 / 공개 과학의 주요 과제는Nielsen이 그의 뛰어난 저서 인 Networked science 에서 발견 한 인센티브 인 것 같습니다
vzn

2
전용 블로그, 여러 GitHub 리포지토리, 대면 회의 (및 공개 창립)가 포함 된 HoTT 프로젝트는 "슈퍼 스타 수학 신 동력을 갖춘"Polymath 프로젝트보다 협업 이론적 인 컴퓨터 과학 연구에 더 유망한 모델이라고 생각합니다.
Thomas Klimpel

6
@ThomasKlimpel Hott가 Fields 메달리스트에서 비롯되었고, Hott 책이 IAS에서 작성되고 IAS에 의해 재정이 지원되었다고 가정 할 때, Hott가 어떻게 "슈퍼 스타 수학 신 동력"이 아닌지 알기가 어렵습니다.
마틴 버거

2
@ThomasKlimpel 나는 가혹한 것에 대해 죄송하지만 이것이 우스운 의견이라고 생각합니다. 우선, 상당한 자금 조달과 사소한 조직 작업을 수행 한 노력을 누구나 즉시 설정할 수 있고 본질적으로 비용이없는 모델과 비교하고 있습니다. 또 다른 예로, "슈퍼 스타 수학 신동 자"의 소멸은 불필요하고 오도됩니다. Gowers, Tao 및 Kalai는 온라인에서 활동적인 수학자입니다. 누가 그런 일을 이끌까요? (그리고 Martin이 지적한 것처럼 Voevodsky도 Fields 메달리스트입니다.)
Sasho Nikolov

답변:


10

Polymath 프로젝트는 돌파구가 발생하면 성공한 것으로 보이며 돌파구 결과를 최적화하거나 더 간단하거나 더 나은 증거를 제시하려고합니다. https://en.wikipedia.org/wiki/Polymath_Project#Problems_solved를 참조 하십시오 . 따라서 CS에서 이러한 특성의 문제를 선택해야합니다. 마음에 바로 오는 하나의 행렬 곱셈의 지속적인 개선 https://en.wikipedia.org/wiki/Matrix_multiplication#Algorithms_for_efficient_matrix_multiplication 2.4에서 현재, ...하지만 솔직히, 나는 과연 사람들이 걱정하지 오전 작업하기에 충분합니다 ...

polymath가 비참하게 실패 할 것으로 예상되는 질문 : P = NP, 온라인 최적 성, UGC 등


5
그런데, 얼마 전에, ... 잘못된 것으로 판명 P = NP,의 발표 증거를 분석하는 박식 프로젝트의 종류가 있었다
J.-E.

3
최근 행렬 곱셈이 인기를 얻었습니다.
Yuval Filmus

2
PCP 정리의 더 확실한 증거 증명을 찾는 것이 그들이 할 수있는 유용한 노력 일 수 있습니다.
Phylliida

4
@ J.-E.Pin : 프로젝트가 성공했습니다!
코디

5
yuval은 행렬 곱셈에 대한 자신의 연구 를 인용하기에는 너무 겸손합니다 . 누군가가 해당 게시물에 댓글을 올리면 (현재 0 개) 바로 사이버 협업을 시작할 수 있습니다. 도전 과제는 수년 동안 존재 해 온 기술 인프라가 아니라 (1) 전문가 부족, (2) 다른 전형적인 / 기존 방식으로 자신을 적용하는 분야의 전문가 (예 : 논문 작성, 회의 참석) 등)
vzn

2

대규모 온라인 협업이 설정되면 합리적인 성공 가능성이있는 문제에 집중해야합니다. 고대의 세 가지 고전적인 건축 문제는 "원을 제곱하는 것", "각도를 세는 것"및 "입방체를 두 배로하는 것"으로 알려져 있습니다. 현대 수학은이 세 가지를 모두 해결했지만, 더 중요한 것은 초기 데카르트 혁명이었습니다. 이로 인해 수학은 나침반과 직선 구조의 정신 교도소에서 벗어날 수있었습니다. 그리스인들은 하늘의 역학 계산을위한 효율적인 epicycle 근사법 에서 알 있듯이 나침반과 직선을 실제 계산 장치로 사용했습니다 .

그래프 이론으로부터 해결 된 추측에 대한 많은 추측과 일반화는 협업을 통해 솔루션에 적용 할 수 있어야합니다. 그러나 일반적인 협업 경험에 따르면 2-4 명의 팀이 훨씬 큰 팀보다 훨씬 효과적입니다. 이 분야에서 매우 성공적인 팀의 예로 N. Robertson, PD Seymour 및 R. Thomas가 있습니다. 강력한 완벽 그래프 추론, 4 가지 색 정리의 일반화 및 사소한 관련 추측과 같은 문제를 공격했습니다. 같은 지역에있는 다른 연구팀도 새로운 결과 발표와 실제 출판 사이의 경과 시간이 너무 길어서 순수한 워크로드 양이 느려져 협업 (이미 발생)이 유익 할 수 있음을 나타냅니다. 속도를 높이기 위해 (나는'

저는 현재 컴퓨터 보조 증명 반박의 실제 응용에서 직관 논리의 완전성 역할을 이해하려고 노력합니다. 그러나 대규모 온라인 협업을 통해 실제로 증거를 만들 계획이라면 견고한 컴퓨터 지원 증명 반박 시스템을 갖추는 것이 실제로 중요 할 수 있습니다. 결국 공동 작업자를 충분히 모른다면 자신이 한 모든 일을 점검하는 데 많은 시간을 낭비하지 않고 자신의 공헌을 신뢰할 수 있는지 판단 할 수있는 방법은 무엇입니까? (나는 수학자들이 반박을 증명하고 직접적인 개인 피드백과 같은 긍정적 인면을 즐기는 데 더 익숙하다는 인상을 받았으며, 컴퓨터 과학자들은 이런 종류의 피드백으로 일상을 덜 보여줍니다.)

당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.