실제로 완전한 답변 (유용한 참고 자료는 아님)이 아니라 확장 된 주석입니다. 어떤 빈에 대해서 빈에 정확히 볼이있을 확률은 p B = ( mB. Sondow로 인해 불평등을 사용할 수 있습니다.((b+1)apB=(mB)(1n)B(n−1n)m−B,pb<((r+1)r+1((b+1)aa)<((b+1)b+1bb)a, 여기서r=mpB<((r+1)r+1rr)B(1n)B(n−1n)m−B. 이 한계는 a ( (b+1)ar=mB−1.((b+1)aa)>14ab((b+1)b+1bb)a
따라서, 우리가 가진 . 이제 빈에서 B 개 이상의 볼 을 찾을 확률에 관심이 있으므로 p ≥ B = ∑ m b = B p b <pB<eB(r+1)ln(r+1)−Brlnr−mlnn+(m−B)ln(n−1)B . 항을 재정렬하면 p ≥ B < e − m ln np≥B=∑mb=Bpb<∑mb=Beb(r+1)ln(r+1)−brlnr−mlnn+(m−b)ln(n−1)
p≥B<e−mlnnn−1×eB(r+1)ln(r+1)−Brlnr−Bln(n−1)∑b=0m−Beb(r+1)ln(r+1)−brlnr−bln(n−1).
위의 요약은 단순히 기하학적 인 시리즈이므로 을 제공하도록 단순화 할 수 있습니다
p≥B<e−mlnnn−1×eB(r+1)ln(r+1)−Brlnr−Bln(n−1)×1−((r+1)r+1rr(n−1))m−B+11−((r+1)r+1rr(n−1)).
If we rewrite
(r+1)r+1rr(n−1) terms using exponentials, we get
p≥B<e−mlnnn−1×eB(r+1)ln(r+1)−Brlnr−Bln(n−1)×1−(e(r+1)ln(r+1)−rlnr−ln(n−1))m−B+11−e(r+1)ln(r+1)−rlnr−ln(n−1),
which then becomes
p≥B<e−mlnnn−1×(eB((r+1)ln(r+1)−rlnr−ln(n−1))−e(m+1)((r+1)ln(r+1)−rlnr−ln(n−1)))1−e(r+1)ln(r+1)−rlnr−ln(n−1).
Now, I take it you care about finding some B such that p≥B<Cn for some constant C, since this gives the total probability of any bin having B or more balls as bounded from above by C. This criteria is satisfied by taking
e−mlnnn−1×(eB((r+1)ln(r+1)−rlnr−ln(n−1))−e(m+1)((r+1)ln(r+1)−rlnr−ln(n−1)))1−e(r+1)ln(r+1)−rlnr−ln(n−1)=Cn,
which can be rewritten as
B=ln(Cnemlnnn−1(1−e(r+1)ln(r+1)−rlnr−ln(n−1))+e(m+1)((r+1)ln(r+1)−rlnr−ln(n−1)))(r+1)ln(r+1)−rlnr−ln(n−1).
I'm not entirely sure how useful this comment will be to you (it's entirely possible I've made a mistake somewhere), but hopefully it can be of some use.