트랜지스터의 아이디어는 다음과 같습니다.
- 왼쪽이 낮고 오른쪽이 높은 경우 R2 (및 왼쪽 트랜지스터가 약간)는 오른쪽 트랜지스터의베이스를 음으로 바이어스하여 게이트를 올바른 전압으로 푸시 할 수 있도록합니다. FET의 채널과 바디 다이오드를 닫으면 차단됩니다.
- 오른쪽이 낮고 왼쪽이 높으면 왼쪽 트랜지스터의 접합부가 다이오드로 작동하고 오른쪽 트랜지스터의베이스를 닫을 정도로 충분히 끌어 올려 R3이 게이트를 낮게 당겨 트랜지스터를 엽니 다. 처음에는 바디 다이오드에 의해 오른쪽에 전원이 공급되기 시작하지만, 채널의 낮은 저항은 매우 빠르게 하락하여 매우 낮은 드롭을 유발합니다.
따라서 왼쪽 트랜지스터는 오른쪽 트랜지스터의 정합 다이오드 역할을합니다. 정확한 구성 요소 값은 선택한 MOSFET 및 PNP 정합 쌍에 약간 힌지 될 수 있습니다. 다른 방법으로 비슷한 트릭을 사용할 수 있지만 가장 잘 알려진 트릭입니다.
다음과 같이 MOSFET의 게이트를 접지에 직접 연결하는 경우 :
이 회로 시뮬레이션 – CircuitLab을 사용하여 작성된 회로도
조정 된 시작 동작으로 인해 항상 연결 상태를 효과적으로 생성하고 있습니다. 일반적으로이 시동 동작은 게이트 경로의 커패시터 및 / 또는 저항을 사용하여 향상됩니다.
왼쪽이 높고 오른쪽이 그렇지 않으면 오른쪽이 바디 다이오드에 의해 들어 올려지고 소스가 게이트보다 높아져 FET가 켜집니다. 오른쪽이 높아지면 소스가 게이트를 기준으로 즉시 올라가고 FET가 다시 켜집니다. 다이오드 동작에는 그다지 중요하지 않습니다.
두 경우 모두 일반적으로 최소 작동 전압보다 최소 10-20 % 낮은 매우 낮은 온 저항을 갖는 FET를 찾고자합니다. 따라서 3.3V에서 사용하는 경우 2.5V 정도에서 완전히 켜져있는 FET를 원할 것입니다. 이는 아마도 1.2V 이하의 임계 값을 의미하지만 데이터 시트에 달려 있습니다.