트랜지스터 증폭에 대한 기본 질문


17

트랜지스터가 어떻게 전압이나 전류를 증폭시킬 수 있는지 설명 할 수 있습니까? 나에 따르면, 증폭은-작은 것을 보내면 더 크게 나옵니다. 예를 들어, 음파를 증폭하고 싶습니다. 나는 소리 증폭기에 속삭이며 5 배 더 큽니다 (증폭 계수에 따라 다름)

그러나 트랜지스터 증폭 동작 에 대해 읽으면 모든 교과서에 따르면 기본 전류 ΔIb는 약간 변경되지만 이미 터 전류 ΔIe는 크게 변하기 때문에 증폭이 있습니다. 그러나 증폭은 어디에 있습니까? 내가 정의한대로 증폭되는 것은 무엇입니까? 증폭 이라는 용어에 대한 나의 이해인가 잘못 되었습니까? 그리고 낮은 저항 영역에서 높은 저항 영역으로 전류가 어떻게 전달됩니까?

트랜지스터가 어떻게 구성되고 전류가 어떻게 흐르는 지 이해했다고 생각합니다. 따라서 누구나 트랜지스터 증폭 동작을 명확하게 설명하고 증폭에 대해 이해 한 것과 관련시킬 수 있습니다.


@ChrisStratton 다음은 electronics
Green Noob

왜 책 이 단순히 "현재"가 아닌 기본 전류 의 변화 에 대해 이야기하는지 스스로에게 물어 보십니까 ?
0x6d64

@ 0x6d64 더 정교해질 수 있습니까?
Green Noob

여기에 꽤 나쁜 답변이 있습니다. 많은 혼란, 트랜지스터 전류 증폭, 트랜지스터 전압 증폭 등
rhody

답변:


18

먼저 증폭 정의부터 시작하겠습니다. 가장 일반적인 방식으로 증폭은 두 값 사이의 비율입니다. 출력 값이 입력 값보다 크다는 것을 의미하지는 않습니다 (가장 일반적으로 사용되는 방식 임). 현재 변화가 크거나 작은 경우에도 중요하지 않습니다.

이제 몇 가지 일반적인 증폭 값으로 이동해 봅시다 :

가장 중요한 (그리고 당신의 질문이 말하는 것)은 입니다. β = I c 로 정의β ,I는c는전류 콜렉터로가는I의B는베이스에 전류이다. 공식을 조금 재정렬하면가장 일반적으로 사용되는 공식 인Ic=βIb가됩니다. 이 공식 때문에 일부 사람들은 트랜지스터가베이스 전류를 "증폭"한다고 말합니다.β=IcIbIcIbIc=βIb

이제 이미 터 전류와 어떤 관련이 있습니까? 우리는 또한 공식 갖습니다. 우리가 그 공식을 두 번째 공식과 결합 할 때, 우리는 β I b + I b + I e = 0이 됩니다. 그에서 우리는 이미 터 전류를 얻을 수 있습니다 - I 전자 = β I B + I B = I B ( β + 1 ) (참고 I의 전자Ic+Ib+Ie=0βIb+Ib+Ie=0Ie=βIb+Ib=Ib(β+1)Ie 이미 터에 전류가 들어가므로 음수입니다).

당신이 사용하는 것을 볼 수에서 계산에 편리한 도구로, 우리는 트랜지스터의베이스 전류와 트랜지스터의 이미 터 전류 사이의 관계를 볼 수 있습니다. 실제로 β 는 수백에서 수천의 범위에 있기 때문에 , "작은"베이스 전류가 "큰"콜렉터 전류 ( "대량"이미 터 전류를 만든다)로 "증폭"되었다고 말할 수있다. 지금까지 델타에 대해서는 언급하지 않았습니다. 소자로서의 트랜지스터는 전류를 변화시킬 필요가 없기 때문이다. 베이스를 일정한 DC 전류에 간단히 연결하면 트랜지스터가 정상적으로 작동합니다. 전류의 변화가 필요한 경우ββ

다른 값도 사용되며 이름은 입니다. 여기에 그것이 있습니다 : α = I cα . 다시 정렬하면Ic=αIe 인것을 알 수 있습니다. 따라서α는 콜렉터 전류를 생성하기 위해 이미 터 전류가 증폭되는 값입니다. 이 경우, 증폭은 실제로 우리에게 더 작은 출력을 제공합니다 (실제로α는 0.98 이상과 같은 1에 가깝지만). 트랜지스터에서 나오는 방출기 전류는 기본 전류와 트랜지스터로 들어가는 콜렉터 전류.α=IcIeIc=αIeαα

이제 트랜지스터가 전압과 전류를 증폭시키는 방법에 대해 조금 이야기하겠습니다. 비밀은 : 그렇지 않습니다. 전압 또는 전류 증폭기! 증폭기 자체는 트랜지스터의 특성을 활용하는 좀 더 복잡한 회로입니다. 또한 입력 노드와 출력 노드가 있습니다. 전압 증폭은 해당 노드 사이의 전압 비율입니다. . 전류 증폭은이 두 노드 사이의 전류 비율입니다 :Ai=IoutAv=VoutVinAi=IoutIin . 또한 전류 및 전압 증폭의 곱인 전력 증폭도 있습니다. 입력 노드와 출력 노드로 선택한 노드에 따라 증폭이 변경 될 수 있습니다!

여기에서 찾을 수있는 트랜지스터와 관련된 흥미로운 값이 거의 없습니다.

요약하자면, 우리는 무언가를하고있는 트랜지스터를 가지고 있습니다. 트랜지스터를 안전하게 사용하려면 트랜지스터가 무엇을하고 있는지 나타낼 수 있어야합니다. 트랜지스터에서 발생하는 프로세스를 나타내는 방법 중 하나는 "증폭"이라는 용어를 사용하는 것입니다. 따라서 증폭을 사용하면 트랜지스터에서 일어나는 일을 실제로 이해하지 못하고 (반도체 물리학 클래스가있는 경우 거기에서 알게됩니다) 많은 실제 문제에 유용한 방정식이 거의 없습니다.


Thanks a lot for answering my earlier questions. But can you tell me why the author has introduced a 5 Kohm resistance in series while explaining voltage 'amplification'?? & where did he get the 20 ohm input resistance? Link
Green Noob

Does't really answer where the amplification comes from.
rhody

@rhody 질문을 볼 때, 주요 문제는 용어 사용이라는 결론을 내렸고 따라서 용어 답변을 제공했습니다. OP는 이미 트랜지스터에 대한 참조를 가지고 있었기 때문에 실제로 어떤 일이 일어나는지 설명 할 필요가 없었습니다.
AndrejaKo

신호가 전달하는 에너지를 기반으로하고 전력 (W)으로 측정 한 신호 강도를 증가 시키면 증폭이 이해된다는 것을 이해하고 있습니다. 따라서 증폭기는 전력을 증가시킵니다. "전압"증폭기는 전류를 낮추지 않고 신호 전압을 높이고 출력 전력을 증가시킵니다. "파워"앰프는 AC 전압과 AC 전류를 모두 증폭시켜 상당한 파워 게인 (전압 증폭기 이상)을 제공합니다.
Mr X

@Mr X I explicitly disagree with your understanding. Namely, we have the "amplification" as an abstraction tool in general, and then we have practical uses of this tool. I explicitly decided not to try to muddy the water in this answer by referring to the practical uses, because I believe that it's very useful to first understand the abstraction tool on its own.
AndrejaKo

7

Transistor does not amplify. Imagine sound waves hitting a microphone: what happens actually is that the sound signal does not pass into the microphone, but the microphone produces a signal corresponding to the sound signal; It is not the actual signal.

Remember that the actual signals in real world cannot be amplified or attenuated. Can you catch a sound or any other real world signal? No. They are as they are, we can only make a system which can work on the effect of the real world signal; sound waves hit on a microphone, light hits on a camera lens etc.

But when it comes to the case of a transistor, you apply an input signal to the base and you obtain a new signal corresponding to the input signal with greater amplitude in the collector. Keep in mind that this happens because a small change in the input side will correspond to a large change in the output side, due to the variation in the resistance. It is only an effect one to one. The output signal is totally a new signal of a grater amplitude, not the actual signal.


This doesn't answer the question at all.
rhody

Actually the electrical wave and a considerable part of the charge carriers do pass from base to emmiter, hence, we could say the new signal is in part composed by the previous one. But this is quite phylosophical, when for us, signals are voltage levels, measurable, repeatable...
Brethlosze

5

The signal is being amplified. Depending on the design of the transistor amplifier the actual base current may or may not be part of the output current. Don't get hung up on a definition of amplification that requires every input electron to get larger and then pass to the output...


Please explain?
Green Noob

@GreenNoob - most transistor amplifiers have bias currents that ensure the circuit is operating linearly. With just the bias currents present, it will be true that emitter current is greater than base current, but this isn't very interesting since these currents are just constants. The books speak about changes in current b/c the signals we ordinarily think of amplifying are imposed as fluctuations on top of the bias currents.
JustJeff

4

The working principle of a BJT (Bipolar Junction Transistor), which makes it a useful thing, is that it amplifies current. Throw a small current in, get a larger current out. The amplification factor is an important parameter of the transistor, and is called hFE. A general purpose transistor may have an hFE of 100, for instance, sometimes higher. Power transistors have to do it with less, like 20 to 30.
So if I inject a 1 mA current in the base of my general purpose NPN transistor I'll get 100 mA of collector current. That's amplification, right? Current amplification.

How about voltage amplification? Well, let's add a couple of resistors. Resistors are cheap, but if you want to make money you can try to sell them expensive by calling them "voltage-to-current converters" :-).

enter image description here

We've added a base resistor, which will cause a base current of

IB=VB0.7VRB

And we know that the collector current IC is a factor hFE higher, so

IC=hFE(VB0.7V)RB

Resistors are really great things, because next to "voltage-to-current converters" you an also use them as "current-to-voltage converters"! (we can charge even more for them!) Due to Ohm's Law:

VRL=RLIC

and since VC=VCCVRL

we get

VC=VCCRLhFE(VB0.7V)RB

or

VC=hFERLRBVB+(hFERLRB0.7V+VCC)

The term between the brackets is a constant which we're not interested in at the moment. The first term shows that VC is VB multiplied by some factor depending on three constants. Let's use concrete values: 100 for hFE, 10 kΩ for RB and 1 kΩ for RC. Then (again ignoring the constant factor)

VC=hFERLRBVB=1001kΩ10kΩVB=10VB

So the output voltage is 10 times the input voltage plus a constant bias. Looks like we can use the transistor for voltage amplification as well.


1
In the strict physics sense, transistors do not amplify current, since even the bipolar transistor is controlled using the base emitter voltage, but I agree it's a convenient shorthand. amasci.com/amateur/transis.html
Mister Mystère

@MisterMystère: a bipolar transistor in common emitter is controlled by base current, not voltage. It's the base current that causes an X times larger collector current. You're wrong.
Joris Groosman

@JorisGroosman Ever heard of the textbook "Art of Electronics?" They teach bipolar transistors with voltage-input design philosophy, not current input. Author Win Hill specifically points out all the flaws in the hfe-based, current-input viewpoint, and shows how they're solved by seeing BJTs as voltage driven; ruled by the Ebers-Moll equation. He points out that current-input doesn't apply to diff amp, current mirror or cascode. Check out one of his forum responses about BJT voltage input versus current input: cr4.globalspec.com/comment/720374/Re-Voltage-vs-Current
wbeaty

@wbeaty: Yes, I know AoE. Odd thing: since the 1950s engineers have calculated collector current as a function of base current is a gazillion of practical applications, and they all work! Current as a function of base voltage probably doesn't go beyond the blackboard.
Joris Groosman

No,you don't know AOE, since they show why hfe DOESN'T work for analog design. Amps based in hfe will fail if temp drifts a couple of degrees. The authors push the voltage-based BJT design philosophy. As Win Hill points out, hfe doesn't explain voltage-input stages such as emitter-followers or diff amps. Op amps and their voltage inputs are hardly a blackboard-only concept. They worK, and are immune to vast changes in the hfe of the transistors involved. Yes, hfe is a useful concept, but without voltage-based signals and Ebers-Moll, a large part of modern analog design would fail.
wbeaty

3

Amplifiy sound, and you're amplifying the energy-flow: the input watts of sound become larger output watts.

Note that an electrical transformer doesn't amplify. It can step up voltage, but it cant increase the watts.

Transistors (and any sort of valve or switch) can amplify. They do it by using a tiny wattage to control a power supply which can output a huge wattage. The large output comes from the power supply, while the input signal is valving the transistpr on and off.

If you have a giant hydraulic press, you can crush cars by touching a valve switch with your little finger. The valve amplified your finger motion to mash Chevys. But actually it was the hundreds-HP haudraulic supply which provided the increased wattage. With NPNs, same idea. Transistors are valves for flowing charge instead of flowing haudraulic fluid.


Nice explanation... To move it to the electrical domain, we can simply say the transistor is an "electrically-controlled resistor" inserted in series ("rheostat") or in parallel ("shunt") to the load. Thus it forms a voltage or current divider. To be more precise, we can only add that this "resistor" is non-linear, and it is controlled both by the side of the input source and the load. And also, the transistor is a passive, not active device (regarding the power).
Circuit fantasist

From this "energy viewpoint", the transistor does not amplify; contrary, it attenuates the power of the source... it does not produce energy; it consumes energy.
Circuit fantasist

reading all the answers of yours really helps me a lot, especially thanks to @wbeaty, your explaination is realllly nice!

Your car crush analogy is soooo much easier to understand than a water valve. Thanks!
dval

0

What is my understanding is that for a transistor to amplify you need to bias it properly. Forward biasing of BE junction makes it a conducting diode so input resistance is less. Reverse biasing CE junction makes it non conducting diode so output resistance is high. And if Ic is almost equal to Ie then the current causes a low voltage drop at input and large one at output. This is why its called an Amplifier.


0

With a transistor, you can achieve this: Give a small signal(ac) at input, and get a larger valued(higher amplitude) signal at output. But this is not all. You have to give DC supply at collector and base; emitter if required. This is called biasing the dc point. The rms power you get at the output will be less than the dc power you have supplied.

If you want to do analysis, there are two steps involved for any circuit.

  1. DC analysis: don't consider any ac signal. Find out the values of all diode currents based on dc voltage at various nodes(Collector, base , emitter). This is done by using KVL along various loops.

  2. AC model: Image has been taken from the book "Electronic Devices and Circuit Theory
    This makes very clear: what we draw as a circuit v/s what elements are actually present inside. Going further, the diode has forward resistance. So the actual model will be like this:

From DC analysis, you must have found the value of Ie. According to diode theory, Re = (26mV/Ie). Our aim is to find Vout/Vin.
1. Vout will depend on Ic.
2. Ic will depend on Ib.
3. Ib will depend on Vin and Re.
4. Re we have found from DC analysis.

enter image description here In AC analysis, we make all the DC supply to 0V. By looking at this, you can make out that the output signal will be an amplified one, right?

Note: This was just to give you an intuitive idea that amplification does take place. But whether you will get amplification or not depends on whether the transistor is in linear(amplifier), saturation or cut off(switch). Again, what will be amplified(current or voltage) depends on type of configuration. So that all comprises of 3-4 chapters of any standard book on analog theory.

당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.