"항상 기본적으로 안테나 피드 포인트가 접지면 바로 위에 있거나 관통 구멍에 내장되어 있어야한다고 생각했습니다."
이것은 일부 안테나에만 해당됩니다.
가장 일반적으로 : 안테나를 전기 전도성 물질, 특히 금속 표면에서 가능한 멀리 떨어 뜨려 놓으십시오.
예외 : 각 안테나에는 특정 필드 구성 (E 필드 및 H 필드)이 있습니다. 금속 표면은 전자장과 직각을 이루는 한 괜찮습니다. 전도성 표면의 문제점은 E- 필드를 단락시키는 것입니다 (0으로 강제). E- 필드가 표면에 직각으로 닿는 한, 표면은 E- 필드에 대해 등전위이며, 필드 구성은 그대로 유지됩니다.
안테나에 대칭적인 속성이있을 때마다 예외가 가장 일반적으로 발생합니다. 예를 들어 완전한 쌍극에는 두 개의 축이 있으며 중간에 피드 포인트가 있습니다. 2 극에 수직 인 평면에서, 피드 포인트에서 바로 E- 필드는 평면에 수직이됩니다. 따라서 쌍극의 한 축을 "단지 평면"으로 대체 할 수 있습니다. 피드 포인트는 현재 단극이 접지 평면에 닿는 위치입니다. 이것은 일반적으로 사용되는 다른 안테나에서도 마찬가지입니다.
반면에, 전자장을 일부 구성으로 강제하기 위해 안테나 설계의 일부로이 효과를 사용할 수 있습니다. 이것은 예를 들어 일부 지향성 안테나에서 수행됩니다.
근거리 대 원거리 : 안테나 필드는 근거리와 원거리 로 분류 할 수 있습니다. 근거리 장에서의 교란은 일반적으로 의도 된 안테나 성능과 관련하여 치명적이며, 원거리 장에서의 교란은 교란 방향의 성능에만 영향을 미칩니다. 근거리 장이 끝나고 원거리 장이 시작되는 곳은 분명하지 않습니다. 일부 안테나는 다른 안테나보다 더 민감합니다. 경험적으로 볼 때, 3-5 람다가 떨어져있는 모든 것은 확실히 멀리 있습니다. 더 가까운 것은 안테나 특성을 방해하거나 방해하지 않을 수 있으며 중심 주파수, 지향성, 일치 등을 수정합니다.
당신이 말하는 콘크리트 안테나 는 나선형입니다. 헬리컬 안테나에 대한이 논문은 두 가지 모델을 사용하여 헬리컬 안테나를 향상시킵니다.
- 접힌 쌍극자 (원주 << 파장) : 대략 쌍극자처럼 행동
- 축 방사 헬리컬 안테나 (둘레 ≈ 파장)
방사선 다이어그램에서 볼 때 고려할 안테나는 적어도 접지면에 수직으로 장착 된 경우 두 극단 사이에 있습니다. 이 경우 E 장은 접지면에 직각이됩니다. 피드 포인트는지면에서 오른쪽에 있어야하며 그라운드 평면은 피드 포인트 주변의 모든 방향으로 최적의 방향으로 몇 센티미터 연장되어야합니다.
안테나가 접지면에 평행하게 장착되면 E- 파일이 단락됩니다. 접지면은 근거리 구성을 크게 변경하므로 안테나 구성의 일부로 고려해야합니다. 실제로, 당신은 이제 완전히 다른 안테나를보고 있습니다. 이것이 연결된 논문의 이론이 더 이상 적용되지 않는 이유입니다. 나는 안테나가 접지면에 공정한 수준의 HF를 유도 할 것이라고 확신한다. 방사선 다이어그램에서 볼 수 있듯이, 새로운 안테나는 접지면 방향으로 실질적으로 방사선이 거의없는 방향성을 가지고 있습니다.
안테나와 접지면 사이의 거리를 최소화하는 것이 왜 유리한지 모르겠습니다. 접지면에 손실이있을 수 있지만 일치 또는 튜닝 또는 지향성 또는 모두 결합으로 인한 것일 수도 있습니다.