xΩ 임피던스 케이블은 어떻게 정의됩니까?


14

이것은 아마도 간단한 질문 일지 모르지만 어디에서나 명확한 대답을 찾을 수없는 것 같습니다. 50Ω 케이블은 단위 길이 당 50Ω을 의미한다고 생각합니다.

이것은 어떤 단위 길이입니까? 이것이 어떻게 정의되어 있지 않은가?


1
전자 레인지 강의에서 올바르게 기억한다면 무한 길이 케이블의 임피던스였습니다. 핵심 전하 캐리어가 완벽한 도체라고 가정합니다. 임피던스 값은 두 도체 (코어 및 쉴드) 사이의 커패시턴스와 단위 길이 당 인덕턴스에서 비롯됩니다. 케이블은 덩어리 재료가 아니므로이 임피던스 값은 매우 복잡한 다차원 파동 방정식을 해결하여 계산됩니다.
hkBattousai

답변:


18

나는 당신이 약간 정확하지만 아마도 이해하기 어려운 것을 보았습니다. 더 직관적 인 느낌을주기 위해 노력하겠습니다.

긴 케이블 끝에 처음으로 전압을 적용하면 어떻게되는지 고려하십시오. 케이블에 약간의 정전 용량이 있으므로 약간의 전류가 흐릅니다. 그게 전부 였다면 큰 전류 스파이크가 발생합니다.

그러나 직렬 인덕턴스도 있습니다. 직렬 인덕턴스와 접지에 대한 캐패시턴스, 직렬 직렬 인덕턴스 등이 약간 비슷합니다. 이러한 인덕터와 커패시터는 각각 케이블 길이를 약간 모델링합니다. 이 길이를 더 작게 만들면 인덕턴스와 커패시턴스가 낮아지고 같은 길이에 더 많은 것이 있습니다. 그러나 커패시턴스에 대한 인덕턴스의 비율은 동일하게 유지됩니다.

이제 초기인가 전압이 케이블 아래로 전파되는 것을 상상해보십시오. 각 단계마다 약간의 정전 용량이 충전됩니다. 그러나이 충전 속도는 인덕턴스에 의해 느려집니다. 결과적으로 케이블 끝에 적용되는 전압이 빛의 속도보다 느리게 전파되고 일정한 전류를 요구하는 방식으로 케이블 길이를 따라 커패시턴스를 충전합니다. 두 배의 전압을 적용한 경우 커패시터는 해당 전압의 두 배로 충전되므로 두 배의 충전이 필요하므로 공급하는 데 두 배의 전류가 필요합니다. 당신이 가진 것은 케이블에 걸리는 전류는 적용하는 전압에 비례합니다. 이게 바로 저항이하는 일입니다.

따라서 신호가 케이블 아래로 전파되는 동안 케이블은 소스에 저항력이있는 것처럼 보입니다. 이 저항은 케이블의 병렬 커패시턴스와 직렬 인덕턴스의 함수일 뿐이며, 다른 쪽 끝에 연결된 것과는 아무런 관련이 없습니다. 이것이 케이블 의 특성 임피던스 입니다.

벤치에 케이블 코일이있어 도체의 DC 저항을 무시할 수있을 정도로 짧으면 신호가 케이블의 끝까지 전파 될 때까지 설명 된대로 작동합니다. 그때까지, 그것은 그것을 구동하는 모든 것에 대한 무한 케이블처럼 보입니다. 실제로 특성 임피던스의 저항처럼 보입니다. 예를 들어 케이블이 충분히 짧고 끝이 짧아지면 결국 신호 소스에 단락이 나타납니다. 그러나 적어도 신호가 케이블의 끝까지 전파되는 데 걸리는 시간 동안 특성 임피던스처럼 보입니다.

이제 케이블의 다른 쪽 끝에 특성 임피던스의 저항을 넣었다고 상상해보십시오. 이제 케이블의 입력 끝은 영원히 저항처럼 보입니다. 이를 케이블 종단 이라고하며 , 시간이 지남에 따라 임피던스를 일정하게 구성하고 케이블 끝에 도달 할 때 신호가 반사되지 않도록하는 우수한 특성을 갖습니다. 결국, 케이블 끝에서 다른 길이의 케이블은 특성 임피던스의 저항과 동일하게 보입니다.


누군가가 나에게 케이블 임피던스를 성공적으로 설명한 것은 이번이 처음입니다
tom r.

13

50 옴 케이블에 관해 이야기 할 때 , 집중 임피던스와는 다른 특성 임피던스 에 대해 이야기하고 있습니다.

케이블에 신호가 전파되면 해당 신호와 관련된 전압 파형과 전류 파형이 있습니다. 케이블의 용량 특성과 유도 특성의 균형으로 인해 이러한 파형의 비율이 고정됩니다.

케이블의 특성 임피던스가 50 옴인 경우 전원이 한 방향으로 만 전파되는 경우 라인을 따라 어느 지점에서나 전압 파형과 전류 파형의 비율이 50 옴입니다. 이 비율은 케이블 구조의 특징 이며 케이블 길이가 변경 될 때 증가하거나 감소하는 것이 아닙니다.

전압과 전류가 해당 케이블에 적절한 비율이 아닌 곳에 신호를 적용하려고하면 신호가 양방향으로 전파되도록해야합니다. 이것은 본질적으로 종단 부하가 케이블 특성 임피던스와 일치하지 않을 때 발생합니다. 부하는 역 전파 신호를 생성하지 않고 동일한 비율의 전압 대 전류를 지원할 수 없으므로 반사가 발생합니다.


케이블이 케이블의 특성 임피던스와 동일한 임피던스 Z를 가진 이전의 부하와 같다고 말할 수없는 이유는 무엇입니까?
Felipe_Ribas

1
@Felipe_Ribas, 당신이 케이블의 한쪽 끝을보고하는 경우, 그리고 다른 쪽 끝이 일치하는 부하 종료되면 임피던스 고정 부하처럼 (당신이 입력 끝에서 말할 수까지), 다음 케이블 행동 것 Z. 그러나 그것은 다른 종료에서 어떤 일이 발생하는지 알려주지 않으며 왜 그런 식으로 행동하는지 설명하지 않습니다.
광자

신호의 주파수도 파라미터입니까, 아니면 특성 임피던스가 모든 주파수에 적합합니까?
deadude

1
Z0

1
@Felipe_Ribas, 당신은 그렇게 할 수 없습니다. 우선, 부하가 일치하지 않으면 전체 반사는 케이블의 Z0뿐만 아니라 길이에도 의존합니다.
광자

9

이론적으로 예제의 케이블이 무한정이면 두 리드 사이의 50Ω 임피던스를 측정하게됩니다.

λ=에프108[m / s]

*) 실제로 케이블의 파장은 진공보다 짧습니다. 안전한면에 있기 위해서는 실제 예를 들어 파장에 2/3를 곱하면됩니다. 따라서 실제로 1MHz의 케이블 걱정 임계 값은 30m * 2 / 3 = 20m이어야합니다.

다른 답변은 더 이론적 인 텍스트를 작성했으며, 실용적 정보를 제공하려고 노력할 것입니다.

실제로 이것은 상당히 깨끗한 신호를 전송할 수있는 특성 임피던스와 동일한 저항으로 양쪽 끝에서 케이블을 종료하려는 것을 의미합니다. 케이블을 올바르게 종단하지 않으면 반사가 발생합니다.

개략도

이 회로 시뮬레이션CircuitLab을 사용하여 작성된 회로도

반사는 수신기 끝에서 신호를 왜곡 (또는 감쇠)시킬 수 있습니다.

이름에서 알 수 있듯이 반사는 케이블의 끝에서 송신기로 다시 이동합니다. RF 송신기는 종종 큰 반사 신호에 대처할 수 없으며 전력 스테이지를 폭파시킬 수 있습니다. 안테나가 연결되어 있지 않은 경우 송신기에 전원을 공급하지 않는 것이 좋습니다.


8

케이블의 특성 임피던스는 물리적 길이와 관련이 없습니다. 시각화하는 것은 매우 복잡하지만 한쪽 끝에 100ohm 부하가 있고 다른 쪽 끝에 10V 배터리가있는 긴 길이의 케이블을 고려하고 10V 배터리가 연결되어있을 때 케이블에 얼마나 많은 전류가 흐를 지 스스로에게 물어보십시오.

결국 100mA가 흐르지 만 케이블에 전류가 흐르고 아직 부하에 도달하지 못한 짧은 시간 동안 10 볼트 배터리에서 얼마나 많은 전류가 흐르고 있습니까? 케이블의 특성 임피던스가 50Ω 인 경우 200mA가 흐르며 이는 2 와트 (10V x 200mA)의 전력을 나타냅니다. 그러나이 전원은 10V에서 100mA를 원하기 때문에 100 옴 저항으로 "소비"될 수 없습니다. 초과 전력은 부하에서 다시 반사되어 케이블을 백업합니다. 결국 문제가 해결되지만 배터리를 적용한 후 짧은 시간 안에 다른 이야기입니다.

0

0=아르 자형+제이ω+제이ω

어디

  • R은 미터당 (또는 단위 길이 당) 직렬 저항입니다.
  • L은 미터당 (또는 단위 길이 당) 직렬 인덕턴스입니다.
  • G는 미터당 (또는 단위 길이 당) 병렬 컨덕턴스입니다.
  • C는 미터당 (또는 단위 길이 당) 병렬 커패시턴스입니다.

오디오 / 전화 분야에서 케이블 특성 임피던스는 일반적으로 다음과 비슷합니다.-

0=아르 자형제이ω

제이ω

RF (일반적으로 1MHz 이상)에서 케이블의 특성 임피던스는 다음과 같습니다.-

0=

제이ω


마지막 단락에 대해 잘 모르겠습니다. 100-1000 MHz 범위 (내 분야가 아님)의 고정밀 작업에 적용될 수 있습니다. 그러나 1GHz 이상에서는 R 손실이 G 손실보다 우세합니다. 이로 인해 기가비트 통신 작업에서 매우 큰 "제곱근"손실 특성이 발생합니다.
광자

@ThePhoton 당신은 저를 가지고 있습니다-1GHz 이상은 확실히 내 분야는 아니지만 100MHz 영역에서 G 손실과 싸워야했습니다. 피부 손실과 관련하여 (내가 언급 한 F 손실의 제곱근 때문에 참조 할 수 있다고 생각합니다) jwL은 항상 sqrt (F)보다 훨씬 빠르게 상승하지는 않습니다. 어쩌면 다른 것입니까?
Andy 일명

1
약간의 검색을 통해 sigcon.com/Pubs/edn/LossyLine.htm을 찾았 습니다 . 주어진 유전체의 경우, G 손실은 더 높은 주파수에서 지배적입니다. 그러나 기사에서 말하지 않은 것은 일반적으로 더 나은 유전체를 얻기 위해 더 많은 돈을 쓸 수 있지만, 우리가 소비하는 것에 관계없이 구리와 피부 효과에 거의 얽매이지 않습니다 (일부 리츠 와이어를 사용할 가능성은 제외) 응용 프로그램)
Photon
당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.