Peirce quincuncial 맵을 생성합니까? [닫은]


11

내가 아는 한 PROJ4 나 ESRI 툴은 Peirce quincuncial projection을 적용 할 수 없습니다.

아무도 그것을 관리 할 수있는 라이브러리 / 소프트웨어를 알고 있습니까?



@Rodrigo 공유 한 코드를 사용하고 싶지만 시작 위치와 방법을 모르겠습니다. 저에게 추천 할만한 자료가 있습니까? QGIS와 함께 사용할 수 있습니까?
레인

@ 레인 나는 R에서 그것을 사용하는 방법을 설명하는 답변을 추가했습니다. 자유롭게 물어보십시오.
Rodrigo

답변:



1

R에서는 이 함수 (아래에 복사)를 사용하여 셰이프 파일의 모든 좌표를 변환 한 다음 맵을 플로팅 할 수 있습니다.

# constants
pi<-acos(-1.0)
twopi<-2.0*pi
halfpi<-0.5*pi
degree<-pi / 180
halfSqrt2<-sqrt(2) / 2
quarterpi<-0.25 * pi
mquarterpi<--0.25 * pi
threequarterpi<-0.75 * pi
mthreequarterpi<--0.75 * pi
radian<-180/pi
sqrt2<-sqrt(2)
sqrt8<-2. * sqrt2
halfSqrt3<-sqrt(3) / 2
PeirceQuincuncialScale<-3.7081493546027438 ;# 2*K(1/2)
PeirceQuincuncialLimit<-1.8540746773013719 ;# K(1/2)


ellFaux<-function(cos_phi,sin_phi,k){
  x<-cos_phi * cos_phi
  y<-1.0 - k * k * sin_phi * sin_phi
  z<-1.0
  rf<-ellRF(x,y,z)
  return(sin_phi * rf)
}

ellRF<-function(x,y,z){
  if (x < 0.0 || y < 0.0 || z < 0.0) {
    print("Negative argument to Carlson's ellRF")
    print("ellRF negArgument")
  }
  delx<-1.0; 
  dely<-1.0; 
  delz<-1.0
  while(abs(delx) > 0.0025 || abs(dely) > 0.0025 || abs(delz) > 0.0025) {
    sx<-sqrt(x)
    sy<-sqrt(y)
    sz<-sqrt(z)
    len<-sx * (sy + sz) + sy * sz
    x<-0.25 * (x + len)
    y<-0.25 * (y + len)
    z<-0.25 * (z + len)
    mean<-(x + y + z) / 3.0
    delx<-(mean - x) / mean
    dely<-(mean - y) / mean
    delz<-(mean - z) / mean
  }
  e2<-delx * dely - delz * delz
  e3<-delx * dely * delz
  return((1.0 + (e2 / 24.0 - 0.1 - 3.0 * e3 / 44.0) * e2+ e3 / 14) / sqrt(mean))
}

toPeirceQuincuncial<-function(lambda,phi,lambda_0=20.0){
  # Convert latitude and longitude to radians relative to the
  # central meridian

  lambda<-lambda - lambda_0 + 180
  if (lambda < 0.0 || lambda > 360.0) {
    lambda<-lambda - 360 * floor(lambda / 360)
  }
  lambda<-(lambda - 180) * degree
  phi<-phi * degree

  # Compute the auxiliary quantities 'm' and 'n'. Set 'm' to match
  # the sign of 'lambda' and 'n' to be positive if |lambda| > pi/2

  cos_phiosqrt2<-halfSqrt2 * cos(phi)
  cos_lambda<-cos(lambda)
  sin_lambda<-sin(lambda)
  cos_a<-cos_phiosqrt2 * (sin_lambda + cos_lambda)
  cos_b<-cos_phiosqrt2 * (sin_lambda - cos_lambda)
  sin_a<-sqrt(1.0 - cos_a * cos_a)
  sin_b<-sqrt(1.0 - cos_b * cos_b)
  cos_a_cos_b<-cos_a * cos_b
  sin_a_sin_b<-sin_a * sin_b
  sin2_m<-1.0 + cos_a_cos_b - sin_a_sin_b
  sin2_n<-1.0 - cos_a_cos_b - sin_a_sin_b
  if (sin2_m < 0.0) {
    sin2_m<-0.0
  }
  sin_m<-sqrt(sin2_m)
  if (sin2_m > 1.0) {
    sin2_m<-1.0
  }
  cos_m<-sqrt(1.0 - sin2_m)
  if (sin_lambda < 0.0) {
    sin_m<--sin_m
  }
  if (sin2_n < 0.0) {
    sin2_n<-0.0
  }
  sin_n<-sqrt(sin2_n)
  if (sin2_n > 1.0) {
    sin2_n<-1.0 
  }
  cos_n<-sqrt(1.0 - sin2_n)
  if (cos_lambda > 0.0) {
    sin_n<--sin_n
  }

  # Compute elliptic integrals to map the disc to the square

  x<-ellFaux(cos_m,sin_m,halfSqrt2)
  y<-ellFaux(cos_n,sin_n,halfSqrt2)

  # Reflect the Southern Hemisphere outward

  if(phi < 0) {
    if (lambda < mthreequarterpi) {
      y<-PeirceQuincuncialScale - y
    } else if (lambda < mquarterpi) {
      x<--PeirceQuincuncialScale - x
    } else if (lambda < quarterpi) {
      y<--PeirceQuincuncialScale - y
    } else if (lambda < threequarterpi) {
      x<-PeirceQuincuncialScale - x
    } else {
      y<-PeirceQuincuncialScale - y
    }
  }

  # Rotate the square by 45 degrees to fit the screen better

  X<-(x - y) * halfSqrt2
  Y<-(x + y) * halfSqrt2
  res<-list(X,Y)
  return(res)
}

이제 그것을 사용하는 방법.

library(rgdal)
p <- readOGR('../shp/ne_110m_admin_0_map_units','ne_110m_admin_0_map_units') # downloaded from https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/110m/cultural/ne_110m_admin_0_map_units.zip
ang <- 28 # the lambda_0 from the Peirce function
# change all coordinates
for (p1 in 1:length(p@polygons)) {
  print(paste0(p1,'/',length(p@polygons)))
  flush.console()
  for (p2 in 1:length(p@polygons[[p1]]@Polygons)) {
    for (p3 in 1:nrow(p@polygons[[p1]]@Polygons[[p2]]@coords)) {
      pos <- toPeirceQuincuncial(p@polygons[[p1]]@Polygons[[p2]]@coords[p3,1],
                                 p@polygons[[p1]]@Polygons[[p2]]@coords[p3,2],ang)
      p@polygons[[p1]]@Polygons[[p2]]@coords[p3,1] <- pos[[1]][1]
      p@polygons[[p1]]@Polygons[[p2]]@coords[p3,2] <- pos[[2]][1]
    }
  }
}
# change the bbox of the SpatialPolygonsDataFrame object (p).
z <- toPeirceQuincuncial(0,-90,ang)[[1]][1]
p@bbox[1,1] <- -z
p@bbox[1,2] <- z
p@bbox[2,1] <- -z
p@bbox[2,2] <- z
# start plotting
par(mar=c(0,0,0,0),bg='#a7cdf2',xaxs='i',yaxs='i')
plot(p,col='gray',lwd=.5)
for (lon in 15*1:24) { # meridians
  pos <- 0
  posAnt <- 0
  for (lat in -90:90) {
    if (length(pos) == 2) {
      posAnt <- pos
    }
    pos <- toPeirceQuincuncial(lon,lat,ang)
    if (length(posAnt) == 2) {
      segments(pos[[1]][1],pos[[2]][1],posAnt[[1]][1],posAnt[[2]][1],col='white',lwd=.5)
    }
  }
}
lats <- 15*1:5 # parallels
posS <- matrix(0,length(lats),2) # southern parallels
posST <- 0 # southern tropic (Tropic of Capricorn)
pos0 <- 0 # Equator
posN <- matrix(0,length(lats),2) # northern parallels
posNT <- 0 # northern tropic (Tropic of Cancer)
for (lon in 0:360) {
  posAntS <- posS
  posAntST <- posST
  posAnt0 <- pos0
  posAntN <- posN
  posAntNT <- posNT
  pos0 <- unlist(toPeirceQuincuncial(lon,0,ang))
  posST <- unlist(toPeirceQuincuncial(lon,-23.4368,ang))
  posNT <- unlist(toPeirceQuincuncial(lon,23.4368,ang))
  for (i in 1:length(lats)) {
    posS[i,] <- unlist(toPeirceQuincuncial(lon,-lats[i],ang))
    posN[i,] <- unlist(toPeirceQuincuncial(lon,lats[i],ang))
  }
  if (lon > 0) {
    segments(pos0[1],pos0[2],posAnt0[1],posAnt0[2],col='red',lwd=1)
    segments(posNT[1],posNT[2],posAntNT[1],posAntNT[2],col='yellow')
    for (i in 1:length(lats)) {
      segments(posN[i,1],posN[i,2],posAntN[i,1],posAntN[i,2],col='white',lwd=.5)
    }
    if (!(lon %in% round(90*(0:3+.5)+ang))) {
      for (i in 1:length(lats)) {
        segments(posS[i,1],posS[i,2],posAntS[i,1],posAntS[i,2],col='white',lwd=.5)
      }
      segments(posST[1],posST[2],posAntST[1],posAntST[2],col='yellow')
    } else {
      for (i in 1:length(lats)) {
        posS[i,] <- unlist(toPeirceQuincuncial(lon-0.001,-lats[i],ang))
        segments(posS[i,1],posS[i,2],posAntS[i,1],posAntS[i,2],col='white',lwd=.5)
        posS[i,] <- unlist(toPeirceQuincuncial(lon,-lats[i],ang))
      }
      posST <- unlist(toPeirceQuincuncial(lon-0.001,-23.4368,ang))
      segments(posST[1],posST[2],posAntST[1],posAntST[2],col='yellow')
      posST <- unlist(toPeirceQuincuncial(lon,-23.4368,ang))
    }
  }
}
dev.print(width=1000,height=1000,'Peirce.png',dev=png)

Peirce Quincuncial 정치 세계지도


0

Mapthematics Geocart 는 Peirce quincuncial 투영 을 지원 하는 것으로 보이는 상용 소프트웨어입니다 . (나는 그것을 직접 사용하지 않았으므로 작동 방식을 확인할 수 없습니다.)

이 투영법은 특정 종류의 파노라마 사진 을 만드는 데에도 사용됩니다 . 벡터 데이터 세트가 아닌 이미지 만 투사해야하는 경우 이미지 처리 솔루션을 찾을 수 있습니다. 예를 들어, 여기에 튜토리얼 포토샵 플러그인과 피어스 quincuncial 파노라마를 만드는 방법에 대한, 그리고 여기에 대한 설명입니다 함께 이미지를 투사를 적용 (스크립트) MathMap .


용지 워핑 피어스 Quincuncial 파노라마 체임벌린 퐁와 브라이언 K. 보글으로는 포함 matlab에 대한 접근 방식의 구현. 이미지 지향적이지만 MatLab은 shapefile을 읽을 수 있으므로 벡터 투영이 함께 자갈로 쌓일 수 있습니다.

당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.