여기서 무슨 일이 일어나고 있는지 설명하고 싶었습니다.
RSA "공개 키" 는 두 개의 숫자로 구성됩니다.
- 모듈러스 (예 : 2,048 비트 숫자)
- 지수 (일반적으로 65,537)
RSA 공개 키를 예로 사용하면 두 숫자는 다음과 같습니다.
- 계수 : 297,056,429,939,040,947,991,047,334,197,581,225,628,107,021,573,849,359,042,679,698,093,131,908, 015,712,695,688,944,173,317,630,555,849,768,647,118,986,535,684,992,447,654,339,728,777,985,990,170, 679,511,111,819,558,063,246,667,855,023,730,127,805,401,069,042,322,764,200,545,883,378,826,983,730, 553,730,138,478,384,327,116,513,143,842,816,383,440,639,376,515,039,682,874,046,227,217,032,079,079,790,098,143,158,087,443,017,552,531,393,264,852,461,292,775,129,262,080,851,633,535,934,010,704,122,673,027,067,442,627,059,982,393,297,716,922,243,940,155,855,127,430,302,323,883,824,137,412,883,916,794,359,982,603,439,112,095,116,831,297,809,626,059,569,444,750,808,699,678,211,904,501,083,183,234,323,797,142,810,155,862,553,705,570,600,021,649,944,369,726,123,996,534,870,137,000,784,980,673,984,909,570,977,377,882,585,701
- 지수 : 65,537
그러면이 숫자를 컴퓨터에 저장하는 방법이 문제가됩니다. 먼저 두 가지를 모두 16 진수로 변환합니다.
- 계수 : EB506399F5C612F5A67A09C1192B92FAB53DB28520D859CE0EF6B7D83D40AA1C1DCE2C0720D15A0F531595CAD81BA5D129F91CC6769719F1435872C4BCD0521150A0263B470066489B918BFCA03CE8A0E9FC2C0314C4B096EA30717C03C28CA29E678E63D78ACA1E9A63BDB1261EE7A0B041AB53746D68B57B68BEF37B71382838C95DA8557841A3CA58109F0B4F77A5E929B1A25DC2D6814C55DC0F81CD2F4E5DB95EE70C706FC02C4FCA358EA9A82D8043A47611195580F89458E3DAB5592DEFE06CDE1E516A6C61ED78C13977AE9660A9192CA75CD72967FD3AFAFA1F1A2FF6325A5064D847028F1E6B2329E8572F36E708A549DDA355FC74A32FDD8DBA65
- 지수 : 010001
RSA는 첫 번째 형식을 발명했습니다.
RSA는 먼저 형식을 발명했습니다.
RSAPublicKey ::= SEQUENCE {
modulus INTEGER, -- n
publicExponent INTEGER -- e
}
그들은 ASN.1 바이너리 인코딩 표준의 DER 특징을 사용하여 두 개의 숫자를 표현하기로 결정했습니다 [1] :
SEQUENCE (2 elements)
INTEGER (2048 bit): EB506399F5C612F5A67A09C1192B92FAB53DB28520D859CE0EF6B7D83D40AA1C1DCE2C0720D15A0F531595CAD81BA5D129F91CC6769719F1435872C4BCD0521150A0263B470066489B918BFCA03CE8A0E9FC2C0314C4B096EA30717C03C28CA29E678E63D78ACA1E9A63BDB1261EE7A0B041AB53746D68B57B68BEF37B71382838C95DA8557841A3CA58109F0B4F77A5E929B1A25DC2D6814C55DC0F81CD2F4E5DB95EE70C706FC02C4FCA358EA9A82D8043A47611195580F89458E3DAB5592DEFE06CDE1E516A6C61ED78C13977AE9660A9192CA75CD72967FD3AFAFA1F1A2FF6325A5064D847028F1E6B2329E8572F36E708A549DDA355FC74A32FDD8DBA65
INTEGER (24 bit): 010001
ASN.1의 최종 바이너리 인코딩은 다음과 같습니다.
30 82 01 0A ;sequence (0x10A bytes long)
02 82 01 01 ;integer (0x101 bytes long)
00 EB506399F5C612F5A67A09C1192B92FAB53DB28520D859CE0EF6B7D83D40AA1C1DCE2C0720D15A0F531595CAD81BA5D129F91CC6769719F1435872C4BCD0521150A0263B470066489B918BFCA03CE8A0E9FC2C0314C4B096EA30717C03C28CA29E678E63D78ACA1E9A63BDB1261EE7A0B041AB53746D68B57B68BEF37B71382838C95DA8557841A3CA58109F0B4F77A5E929B1A25DC2D6814C55DC0F81CD2F4E5DB95EE70C706FC02C4FCA358EA9A82D8043A47611195580F89458E3DAB5592DEFE06CDE1E516A6C61ED78C13977AE9660A9192CA75CD72967FD3AFAFA1F1A2FF6325A5064D847028F1E6B2329E8572F36E708A549DDA355FC74A32FDD8DBA65
02 03 ;integer (3 bytes long)
010001
그런 다음 모든 바이트를 함께 실행하고 Base64로 인코딩하면 다음과 같은 결과가 나타납니다.
MIIBCgKCAQEA61BjmfXGEvWmegnBGSuS+rU9soUg2FnODva32D1AqhwdziwHINFa
D1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBSEVCgJjtHAGZIm5GL/KA86KDp/CwDFMSw
luowcXwDwoyinmeOY9eKyh6aY72xJh7noLBBq1N0bWi1e2i+83txOCg4yV2oVXhB
o8pYEJ8LT3el6Smxol3C1oFMVdwPgc0vTl25XucMcG/ALE/KNY6pqC2AQ6R2ERlV
gPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeulmCpGSynXNcpZ/06+vofGi/2MlpQZNhH
Ao8eayMp6FcvNucIpUndo1X8dKMv3Y26ZQIDAQAB
RSA 연구소는 헤더와 트레일러를 추가한다고 말했습니다.
-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEA61BjmfXGEvWmegnBGSuS+rU9soUg2FnODva32D1AqhwdziwHINFa
D1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBSEVCgJjtHAGZIm5GL/KA86KDp/CwDFMSw
luowcXwDwoyinmeOY9eKyh6aY72xJh7noLBBq1N0bWi1e2i+83txOCg4yV2oVXhB
o8pYEJ8LT3el6Smxol3C1oFMVdwPgc0vTl25XucMcG/ALE/KNY6pqC2AQ6R2ERlV
gPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeulmCpGSynXNcpZ/06+vofGi/2MlpQZNhH
Ao8eayMp6FcvNucIpUndo1X8dKMv3Y26ZQIDAQAB
-----END RSA PUBLIC KEY-----
다섯 개의 하이픈과 단어 BEGIN RSA PUBLIC KEY
. 이것이 PEM DER ASN.1 PKCS # 1 RSA 공개 키입니다.
- PEM : base64의 동의어
- DER : ASN.1 인코딩의 특징
- ASN.1 : 사용 된 이진 인코딩 체계
- PKCS # 1 : 모듈러스와 지수로 구성된 구조로 공개 키를 나타내는 공식 사양
- RSA 공개 키 : 사용중인 공개 키 알고리즘
RSA뿐만 아니라
그 후 다른 형태의 공개 키 암호화가 등장했습니다.
이러한 암호화 알고리즘 의 매개 변수를 표현하는 방법에 대한 표준을 만들 때 사람들은 RSA가 원래 정의한 것과 동일한 아이디어를 많이 채택했습니다.
- ASN.1 바이너리 인코딩 사용
- base64 그것
- 다섯 개의 하이픈으로 감싸
- 그리고 단어
BEGIN PUBLIC KEY
그러나 다음을 사용하는 대신 :
-----BEGIN RSA PUBLIC KEY-----
-----BEGIN DH PUBLIC KEY-----
-----BEGIN EC PUBLIC KEY-----
대신 그들은 따라야 할 OID (Object Identifier)를 포함하기로 결정했습니다. RSA 공개 키의 경우 :
- RSA PKCS # 1 :
1.2.840.113549.1.1.1
따라서 RSA 공개 키의 경우 본질적으로 다음과 같습니다.
public struct RSAPublicKey {
INTEGER modulus,
INTEGER publicExponent
}
이제 그들은 기본적으로 SubjectPublicKeyInfo 를 만들었습니다 .
public struct SubjectPublicKeyInfo {
AlgorithmIdentifier algorithm,
RSAPublicKey subjectPublicKey
}
실제 DER ASN.1 정의는 다음과 같습니다.
SubjectPublicKeyInfo ::= SEQUENCE {
algorithm ::= SEQUENCE {
algorithm OBJECT IDENTIFIER, -- 1.2.840.113549.1.1.1 rsaEncryption (PKCS#1 1)
parameters ANY DEFINED BY algorithm OPTIONAL },
subjectPublicKey BIT STRING {
RSAPublicKey ::= SEQUENCE {
modulus INTEGER, -- n
publicExponent INTEGER -- e
}
}
그러면 다음과 같은 ASN.1이 제공됩니다.
SEQUENCE (2 elements)
SEQUENCE (2 elements)
OBJECT IDENTIFIER 1.2.840.113549.1.1.1
NULL
BIT STRING (1 element)
SEQUENCE (2 elements)
INTEGER (2048 bit): EB506399F5C612F5A67A09C1192B92FAB53DB28520D859CE0EF6B7D83D40AA1C1DCE2C0720D15A0F531595CAD81BA5D129F91CC6769719F1435872C4BCD0521150A0263B470066489B918BFCA03CE8A0E9FC2C0314C4B096EA30717C03C28CA29E678E63D78ACA1E9A63BDB1261EE7A0B041AB53746D68B57B68BEF37B71382838C95DA8557841A3CA58109F0B4F77A5E929B1A25DC2D6814C55DC0F81CD2F4E5DB95EE70C706FC02C4FCA358EA9A82D8043A47611195580F89458E3DAB5592DEFE06CDE1E516A6C61ED78C13977AE9660A9192CA75CD72967FD3AFAFA1F1A2FF6325A5064D847028F1E6B2329E8572F36E708A549DDA355FC74A32FDD8DBA65
INTEGER (24 bit): 010001
ASN.1의 최종 바이너리 인코딩은 다음과 같습니다.
30 82 01 22 ;SEQUENCE (0x122 bytes = 290 bytes)
| 30 0D ;SEQUENCE (0x0d bytes = 13 bytes)
| | 06 09 ;OBJECT IDENTIFIER (0x09 = 9 bytes)
| | 2A 86 48 86
| | F7 0D 01 01 01 ;hex encoding of 1.2.840.113549.1.1
| | 05 00 ;NULL (0 bytes)
| 03 82 01 0F 00 ;BIT STRING (0x10f = 271 bytes)
| | 30 82 01 0A ;SEQUENCE (0x10a = 266 bytes)
| | | 02 82 01 01 ;INTEGER (0x101 = 257 bytes)
| | | | 00 ;leading zero of INTEGER
| | | | EB 50 63 99 F5 C6 12 F5 A6 7A 09 C1 19 2B 92 FA
| | | | B5 3D B2 85 20 D8 59 CE 0E F6 B7 D8 3D 40 AA 1C
| | | | 1D CE 2C 07 20 D1 5A 0F 53 15 95 CA D8 1B A5 D1
| | | | 29 F9 1C C6 76 97 19 F1 43 58 72 C4 BC D0 52 11
| | | | 50 A0 26 3B 47 00 66 48 9B 91 8B FC A0 3C E8 A0
| | | | E9 FC 2C 03 14 C4 B0 96 EA 30 71 7C 03 C2 8C A2
| | | | 9E 67 8E 63 D7 8A CA 1E 9A 63 BD B1 26 1E E7 A0
| | | | B0 41 AB 53 74 6D 68 B5 7B 68 BE F3 7B 71 38 28
| | | | 38 C9 5D A8 55 78 41 A3 CA 58 10 9F 0B 4F 77 A5
| | | | E9 29 B1 A2 5D C2 D6 81 4C 55 DC 0F 81 CD 2F 4E
| | | | 5D B9 5E E7 0C 70 6F C0 2C 4F CA 35 8E A9 A8 2D
| | | | 80 43 A4 76 11 19 55 80 F8 94 58 E3 DA B5 59 2D
| | | | EF E0 6C DE 1E 51 6A 6C 61 ED 78 C1 39 77 AE 96
| | | | 60 A9 19 2C A7 5C D7 29 67 FD 3A FA FA 1F 1A 2F
| | | | F6 32 5A 50 64 D8 47 02 8F 1E 6B 23 29 E8 57 2F
| | | | 36 E7 08 A5 49 DD A3 55 FC 74 A3 2F DD 8D BA 65
| | | 02 03 ;INTEGER (03 = 3 bytes)
| | | | 010001
그리고 이전과 마찬가지로 모든 바이트를 Base64로 인코딩하면 두 번째 예제로 끝납니다.
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA61BjmfXGEvWmegnBGSuS
+rU9soUg2FnODva32D1AqhwdziwHINFaD1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBS
EVCgJjtHAGZIm5GL/KA86KDp/CwDFMSwluowcXwDwoyinmeOY9eKyh6aY72xJh7n
oLBBq1N0bWi1e2i+83txOCg4yV2oVXhBo8pYEJ8LT3el6Smxol3C1oFMVdwPgc0v
Tl25XucMcG/ALE/KNY6pqC2AQ6R2ERlVgPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeu
lmCpGSynXNcpZ/06+vofGi/2MlpQZNhHAo8eayMp6FcvNucIpUndo1X8dKMv3Y26
ZQIDAQAB
약간 다른 헤더와 트레일러를 추가하면 다음을 얻을 수 있습니다.
-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA61BjmfXGEvWmegnBGSuS
+rU9soUg2FnODva32D1AqhwdziwHINFaD1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBS
EVCgJjtHAGZIm5GL/KA86KDp/CwDFMSwluowcXwDwoyinmeOY9eKyh6aY72xJh7n
oLBBq1N0bWi1e2i+83txOCg4yV2oVXhBo8pYEJ8LT3el6Smxol3C1oFMVdwPgc0v
Tl25XucMcG/ALE/KNY6pqC2AQ6R2ERlVgPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeu
lmCpGSynXNcpZ/06+vofGi/2MlpQZNhHAo8eayMp6FcvNucIpUndo1X8dKMv3Y26
ZQIDAQAB
-----END PUBLIC KEY-----
그리고 이것은 X.509 SubjectPublicKeyInfo / OpenSSL PEM 공개 키입니다 [2] .
제대로 하시거나 해킹하세요
이제 인코딩이 마술이 아니라는 것을 알았으므로 RSA 모듈러스와 지수를 구문 분석하는 데 필요한 모든 부분을 작성할 수 있습니다. 또는 처음 24 바이트가 원래 PKCS # 1 표준 위에 새로운 내용이 추가되었음을 알 수 있습니다.
30 82 01 22 ;SEQUENCE (0x122 bytes = 290 bytes)
| 30 0D ;SEQUENCE (0x0d bytes = 13 bytes)
| | 06 09 ;OBJECT IDENTIFIER (0x09 = 9 bytes)
| | 2A 86 48 86
| | F7 0D 01 01 01 ;hex encoding of 1.2.840.113549.1.1
| | 05 00 ;NULL (0 bytes)
| 03 82 01 0F 00 ;BIT STRING (0x10f = 271 bytes)
| | ...
처음 24 바이트는 "새로운"항목이 추가되었습니다.
30 82 01 22 30 0D 06 09 2A 86 48 86 F7 0D 01 01 01 05 00 03 82 01 0F 00
그리고 행운과 행운의 특별한 우연으로 인해 :
24 바이트 는 32 개의 base64 인코딩 문자 와 정확히 일치 합니다.
Base64에서 : 3 바이트는 4 개의 문자가됩니다.
30 82 01 22 30 0D 06 09 2A 86 48 86 F7 0D 01 01 01 05 00 03 82 01 0F 00
\______/ \______/ \______/ \______/ \______/ \______/ \______/ \______/
| | | | | | | |
MIIB IjAN Bgkq hkiG 9w0B AQEF AAOC AQ8A
즉, 두 번째 X.509 공개 키를 사용하면 처음 32자는 새로 추가 된 항목에만 해당합니다.
-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8A
MIIBCgKCAQEA61BjmfXGEvWmegnBGSuS+rU9soUg2FnODva32D1AqhwdziwHINFa
D1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBSEVCgJjtHAGZIm5GL/KA86KDp/CwDFMSw
luowcXwDwoyinmeOY9eKyh6aY72xJh7noLBBq1N0bWi1e2i+83txOCg4yV2oVXhB
o8pYEJ8LT3el6Smxol3C1oFMVdwPgc0vTl25XucMcG/ALE/KNY6pqC2AQ6R2ERlV
gPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeulmCpGSynXNcpZ/06+vofGi/2MlpQZNhH
Ao8eayMp6FcvNucIpUndo1X8dKMv3Y26ZQIDAQAB
-----END PUBLIC KEY-----
처음 32자를 제거하고 BEGIN RSA PUBLIC KEY로 변경하는 경우 :
-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEA61BjmfXGEvWmegnBGSuS+rU9soUg2FnODva32D1AqhwdziwHINFa
D1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBSEVCgJjtHAGZIm5GL/KA86KDp/CwDFMSw
luowcXwDwoyinmeOY9eKyh6aY72xJh7noLBBq1N0bWi1e2i+83txOCg4yV2oVXhB
o8pYEJ8LT3el6Smxol3C1oFMVdwPgc0vTl25XucMcG/ALE/KNY6pqC2AQ6R2ERlV
gPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeulmCpGSynXNcpZ/06+vofGi/2MlpQZNhH
Ao8eayMp6FcvNucIpUndo1X8dKMv3Y26ZQIDAQAB
-----END RSA PUBLIC KEY-----
당신은 당신이 원했던 바로 그 이전 RSA PUBLIC KEY
형식을 가지고 있습니다.