답변:
Fock 공간의 중첩과 Fock 공간의 회전은 절대적으로 어디에나 있습니다.
것이 중요합니다 모든 전자기장의 고전 상태는 여러 가지 광자 수의 고유 상태의 겹쳐 적층이다.
양자 장 이론 의 전체 학문은 (대략) 특정 물리적 동기 Fock 공간 내에서 어떤 회전이 허용되고 실제로 어떤 진폭이 발생하는지에 관한 것입니다.
회로 와 캐비티 QED 의 실험적 패러다임 ( 현재 70 세 이론의 예측을 정확하게 검증)은 DaftWullie가 말한 것처럼 광자 수 상태 (특히 "단일 광자의 존재 또는 부재")에 대한 연산을 명시 적으로 처리합니다. 그것은 원자, 분자 및 광학 물리학의 초석입니다. 회로 QED는 초전도 플럭스 큐 비트를 뒷받침하는 필수 이론으로, 장치는 합리적이거나 불합리한 의심 이상의 코 히어 런트 양자 효과를 나타내는 것으로 나타났습니다. Serge Haroche 는 캐비티 QED에 대한 연구로 2012 년 노벨 물리학상을 수상했으며, 소량의 마이크로파 광자의 중첩을 행복하게 생성, 제어 및 측정했습니다. 많은 실험가들이 매일 이것을합니다.
실제 양자 컴퓨터에서 하나 이상의 큐 비트를 나타내는데 단일 고조파 모드를 사용하는 것이 오랫동안 제안되어 왔으며, 여기서 논리 상태는 다른 점유 수의 상태의 중첩으로 인코딩된다. 이 작업을 수행하는 방법에 대한 몇 가지 아이디어와 이것이 최고의 아이디어가 아닌 몇 가지 이유는 Nielsen and Chuang, 섹션 7.2를 참조하십시오.
이러한 종류의 작업을 수행하는 방법에 대한 문헌은 부족하지 않습니다. 사실, 현대 물리학의 사소한 부분은 정확히 그것과 관련이 있습니다. 나는 당신이 반대 생각을 어디서 어떻게 받을지 상상할 수 없습니다.
짧은 대답은 당신이 할 수 없다는 것입니다. 다른 입자 수의 중첩을 생성 할 수 없다고 가정하는 "입자 수 슈퍼 선택 규칙"이라는 것이 있습니다. 따라서 Fock 상태를 준비하면 위상 게이트 및 비트 플립을 수행 할 수 있지만 다른 입자 번호의 중첩을 생성하는 임의의 회전을 수행 할 수는 없습니다.
더 긴 대답은 올바른 참조 프레임을 사용할 수있는 경우 때때로 중첩을 만들 수 있다는 것입니다. 이 내용에 대한 좋은 토론이 있습니다 . 이것이 다른 수의 광자들의 중첩 인 코 히어 런트 상태와 같은 상태가 생성 될 수있는 이유 입니다 (그리고 양자 계산에 사용되지만 완전히 다른 질문입니다). 그러나 나는 이것이 작은 광자 수 (예 : 단일 광자의 존재 또는 부재)로는 작동하지 않는다고 생각합니다. 그 맥락에서 할 수있는 유일한 일은 두 장소 중 하나에 하나의 광자가 겹쳐져있는 것입니다.