2 큐 비트에 대해 3 개의 결과를 똑같이 중첩하는 회로를 어떻게 만들 수 있습니까?


18

주어진 2 큐 비트 시스템과 따라서 4 가지 가능한 측정 결과는 {|00 , |01 , |10 , |11} , 내가 주를 준비 할 수있는 방법, 여기서

  1. 단지 3 이들 4 측정 결과들이 가능하다 (예를 들어, |00 , |01 , |10 )?

  2. 이러한 측정은 똑같이 가능합니까? (벨 상태와 같지만 3 가지 결과)


1
실제 상태를 쓰거나 입력이 주어진 상태를 준비하기 위해 회로를 만드는 것을 의미합니까?
Josu Etxezarreta Martinez 2018 년

@JosuEtxezarretaMartinez, 나는 회로를 의미한다.
weekens

@Blue, 당신은 어떻게 이러한 변환 관리 DIT 0011디랙 표기법에? 나는 노력 $\ket{00}$하고 실패했다.
weekens

1
@weekens "edit"를 클릭하면 MathJax 코드를 볼 수 있습니다. 또한 이것을 참조 하십시오 .
Sanchayan Dutta 2016 년

1
에서 Niel 드 Beaudrap에서 솔루션 쿼크 ...
stestet

답변:


10

부분적으로 문제를 해결하십시오.

우리는 이미 전송이 있다고 100. 우리는1로보낼 수 있습니다1300+2301바이1300+(12(1+i))2301+(12(1i))2310 . 그 모든 확률과 요구 사항을 충족 1SWAP 단계는 다르지만 단계가 다릅니다. 각각의 위상 시프트 게이트를 사용하여 원하는 위상을 모두 얻으려면 원하는 위상을 얻으십시오.13

이제 우리는 어떻게에서받을 수 있나요 100? 1이라면1300+2301, 우리는 두 번째 큐 비트에 마드을 할 수 있습니다. 쉽지는 않지만 두 번째 큐빗에서만 단일을 사용할 수 있습니다. 그것은 두 번째 큐 비트에서 순전히 회전 연산자에 의해 수행됩니다.1200+1201

IdU:0(0)→∣0(130+231)

작동합니다. 필요한 경우 이것을 더 기본적인 게이트로 분해하십시오.

U=(13232313)

전체적으로 우리는 :

001300+23011300+(12(1+i))2301+(12(1i))23101300+eiθ1301+eiθ2310

How do I construct U from basic gates? Let's say, from those available on IBM Q Experience.
weekens

1
@weekens There's an 'advanced' gate called U3 that allows you to implement any single qubit unitary - you input the values for θ,λ and ϕ to implement
U3(θ,λ,ϕ)=(cosθ2eiλsinθ2eiϕsinθ2ei(λ+ϕ)cosθ2),
which can be approximated using θ1.91,λ=π and ϕ=0
Mithrandir24601

To do this in basic gates, it looks like you would need to rotate into the right basis, then do a phase rotation, then rotate back which may require a fair few gates. However, in a sense, the above U3 is basic in that it's a physically implemented gate (i.e. is directly achieved by performing a couple of physical operations on the qubit instead of the many the would be required by stringing lots of 'not-advanced' gates together)
Mithrandir24601

@Mithrandir24601, thanks for your explanation! I haven't used U3 yet, will experiment with it in nearest time.
weekens

@AHusain, implemented your approach in Quirks simulator: here
weekens

8

I'll tell you how to create any two qubit pure state you might ever be interested in. Hopefully you can use it to generate the state you want.

Using a single qubit rotation followed by a cnot, it is possible to create states of the form

α|0|0+β|1|1.

Then you can apply an arbitrary unitary, U, to the first qubit. This rotates the |0 and |1 states to new states that we'll call |a0 and |a1,

U|0=|a0,U|1=|a1

Our entangled state is then

α|a0|0+β|a1|1.

We can similarly apply a unitary to the second qubit.

V|0=|b0,V|1=|b1

which gives us the state

α|a0|b0+β|a1|b1.

Due to the Schmidt decomposition, it is possible to express any pure state of two qubits in the form above. This means that any pure state of two qubits, including the one you want, can be created by this procedure. You just need to find the right rotation around the x axis, and the right unitaries U and V.

To find these, you first need to get the reduced density matrix for each of your two qubits. The eigenstates for the density matrix of your first qubit will be your |a0 and |a1. The eigenstates for the second qubit will be |b0 and |b1. You'll also find that |a0 and |b0 will have the same eigenvalue, which is α2. The coefficient β can be similarly derived from the eigenvalues of |a1 and |b1.


8

Here is how you might go about designing such a circuit. Suppose that you would like to produce the state |ψ=13(|00+|01+|10). Note the normalisation of 1/3, which is necessary for |ψ to be a unit vector.

If we want to consider a straightforward way to realise this state, we might want to think in terms of the first qubit being a control, which determines whether the second qubit should be in the state |+=12(|0+|1), or in the state |0, by using some conditional operations. This motivates considering the decomposition

|ψ=23|0|++13|1|0.
Taking this view it makes sense to consider preparing |ψ as follows:
  1. Prepare two qubits in the state |00.
  2. Rotate the first qubit so that it is in the state 23|0+13|1.
  3. Apply a coherently controlled operation on the two qubits which, when the first qubit is in the state |0, performs a Hadamard on the second qubit.

Which specific operations you would apply to realise these transformations — i.e. which single-qubit transformation would be most suitable for step 2, and how you might decompose the two-qubit unitary in step 3 into CNOTs and Pauli rotations — is a simple exercise. (Hint: use the fact that both X and the Hadamard are self-inverse to find as simple a decomposition as possible in step 3.)


0

Here is an implementation of a circuit producing state |ψ=13(|00+|01+|10) on IBM Q:

Circuit

Note that θ=1.2310 for Ry on q0. θ=π4 and θ=π4 for first and second Ry on q1.

The Ry on q0 prepares qubit in superposition |q0=23|0+13|1. Ry gates on q1 and CNOT implements controlled Hadamard gate. When q0 is in state |0 the Hadamard acts on q1 thanks to negation X. This happens with probability 23. Since Hadamard turns |0 to |+, i.e. equally distributed superposition, final states |00 and |01 can be measured with probability 13. When q0 is in state |1, controled Hadamard does not act and state |10 is measured. Since q0 is in state |1 with probability 13, |10 is measured also with probability 13.

당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.