주어진 큐 비트 시스템과 따라서 가지 가능한 측정 결과는 , , , , 내가 주를 준비 할 수있는 방법, 여기서
단지 이들 측정 결과들이 가능하다 (예를 들어, , , )?
이러한 측정은 똑같이 가능합니까? (벨 상태와 같지만 가지 결과)
00
와 11
디랙 표기법에? 나는 노력 $\ket{00}$
하고 실패했다.
주어진 큐 비트 시스템과 따라서 가지 가능한 측정 결과는 , , , , 내가 주를 준비 할 수있는 방법, 여기서
단지 이들 측정 결과들이 가능하다 (예를 들어, , , )?
이러한 측정은 똑같이 가능합니까? (벨 상태와 같지만 가지 결과)
00
와 11
디랙 표기법에? 나는 노력 $\ket{00}$
하고 실패했다.
답변:
부분적으로 문제를 해결하십시오.
우리는 이미 전송이 있다고 에 1. 우리는1로보낼 수 있습니다바이√ . 그 모든 확률과 요구 사항을 충족 1 단계는 다르지만 단계가 다릅니다. 각각의 위상 시프트 게이트를 사용하여 원하는 위상을 모두 얻으려면 원하는 위상을 얻으십시오.
이제 우리는 어떻게에서받을 수 있나요 에 1? 1이라면, 우리는 두 번째 큐 비트에 마드을 할 수 있습니다. 쉽지는 않지만 두 번째 큐빗에서만 단일을 사용할 수 있습니다. 그것은 두 번째 큐 비트에서 순전히 회전 연산자에 의해 수행됩니다.
작동합니다. 필요한 경우 이것을 더 기본적인 게이트로 분해하십시오.
전체적으로 우리는 :
I'll tell you how to create any two qubit pure state you might ever be interested in. Hopefully you can use it to generate the state you want.
Using a single qubit rotation followed by a cnot, it is possible to create states of the form
Then you can apply an arbitrary unitary, , to the first qubit. This rotates the and states to new states that we'll call and ,
Our entangled state is then
We can similarly apply a unitary to the second qubit.
which gives us the state
Due to the Schmidt decomposition, it is possible to express any pure state of two qubits in the form above. This means that any pure state of two qubits, including the one you want, can be created by this procedure. You just need to find the right rotation around the x axis, and the right unitaries and .
To find these, you first need to get the reduced density matrix for each of your two qubits. The eigenstates for the density matrix of your first qubit will be your and . The eigenstates for the second qubit will be and . You'll also find that and will have the same eigenvalue, which is . The coefficient can be similarly derived from the eigenvalues of and .
Here is how you might go about designing such a circuit. Suppose that you would like to produce the state . Note the normalisation of , which is necessary for to be a unit vector.
If we want to consider a straightforward way to realise this state, we might want to think in terms of the first qubit being a control, which determines whether the second qubit should be in the state , or in the state , by using some conditional operations. This motivates considering the decomposition
Which specific operations you would apply to realise these transformations — i.e. which single-qubit transformation would be most suitable for step 2, and how you might decompose the two-qubit unitary in step 3 into CNOTs and Pauli rotations — is a simple exercise. (Hint: use the fact that both and the Hadamard are self-inverse to find as simple a decomposition as possible in step 3.)
Here is an implementation of a circuit producing state on IBM Q:
Note that for on . and for first and second on .
The on prepares qubit in superposition . gates on and implements controlled Hadamard gate. When is in state the Hadamard acts on thanks to negation . This happens with probability . Since Hadamard turns to , i.e. equally distributed superposition, final states and can be measured with probability . When is in state , controled Hadamard does not act and state is measured. Since is in state with probability , is measured also with probability .