답변:
프로덕션 / 테스트 환경에서 쿼리 로깅을 설정 한 경우 (필요하지 않은 경우) maatkit 툴킷 에서 mk-query-digest 를 사용할 수 있습니다 . 가장 자주 / 오래 걸리는 쿼리 등을 확인하는 데 도움이됩니다.
또 다른 상용 옵션은 MySQL Enterprise Monitor의 일부인 MySQL Query Analyzer 입니다. 나는 홀드 볼 쿼리를 프로파일 링하여 성능을 향상시키는 방법을 찾는 데 도움이되는 것이 적당하다는 것을 알았습니다.
MySQLTuner를 확인할 수도 있습니다
이 작은 스크립트를 사용합니다. 공식적인 것은 아니지만 항상 나에게 유용했습니다.
나는 몇 가지 스크립트와 다른 도구를 모두 사용했지만 Jet Profiler 는 진행 상황과 상황에 대한 실시간 모니터링 및 시각화 기능을 실제로 제공한다는 것을 알았습니다. 정식 버전은 돈이 들지만 제한된 무료 버전도 유용하며 정식 버전으로 할 수있는 일에 대해 좋은 느낌을줍니다.
참조 : https://sites.google.com/site/basicsqlmanagment/ 저에게 효과적이며 프록시 프로파일 러가 아닙니다.
나는 다음을 적극 권장합니다
이전 MAATKIT 설명서에서
Column Meaning
============ ==========================================================
Rank The query's rank within the entire set of queries analyzed
Query ID The query's fingerprint
Response time The total response time, and percentage of overall total
Calls The number of times this query was executed
R/Call The mean response time per execution
Apdx The Apdex score; see --apdex-threshold for details
V/M The Variance-to-mean ratio of response time
EXPLAIN If --explain was specified, a sparkline; see --explain
Item The distilled query
DBA StackExchange에서 나는 MySQL 일반 쿼리 로그 성능 효과에 대답했다 . 이전 게시물에서 일반 로그 또는 느린 로그 대신 mk-query-digest를 사용하는 것이 좋습니다. 이 게시물에서 다음은 mk-query-digest가 수행 한 쿼리 프로파일 링의 샘플 출력입니다.
# Rank Query ID Response time Calls R/Call Item
# ==== ================== ================ ======= ========== ====
# 1 0x812D15015AD29D33 336.3867 68.5% 910 0.369656 SELECT mt_entry mt_placement mt_category
# 2 0x99E13015BFF1E75E 25.3594 5.2% 210 0.120759 SELECT mt_entry mt_objecttag
# 3 0x5E994008E9543B29 16.1608 3.3% 46 0.351321 SELECT schedule_occurrence schedule_eventschedule schedule_event schedule_eventtype schedule_event schedule_eventtype schedule_occurrence.start
# 4 0x84DD09F0FC444677 13.3070 2.7% 23 0.578567 SELECT mt_entry
# 5 0x377E0D0898266FDD 12.0870 2.5% 116 0.104199 SELECT polls_pollquestion mt_category
# 6 0x440EBDBCEDB88725 11.5159 2.3% 21 0.548376 SELECT mt_entry
# 7 0x1DC2DFD6B658021F 10.3653 2.1% 54 0.191949 SELECT mt_entry mt_placement mt_category
# 8 0x6C6318E56E149036 8.8294 1.8% 44 0.200667 SELECT schedule_occurrence schedule_eventschedule schedule_event schedule_eventtype schedule_event schedule_eventtype schedule_occurrence.start
# 9 0x392F6DA628C7FEBD 8.5243 1.7% 9 0.947143 SELECT mt_entry mt_objecttag
# 10 0x7DD2B294CFF96961 7.3753 1.5% 70 0.105362 SELECT polls_pollresponse
# 11 0x9B9092194D3910E6 5.8124 1.2% 57 0.101973 SELECT content_specialitem content_basecontentitem advertising_product organizations_neworg content_basecontentitem_item_attributes
# 12 0xA909BF76E7051792 5.6005 1.1% 55 0.101828 SELECT mt_entry mt_objecttag mt_tag
# 13 0xEBE07AC48DB8923E 5.5195 1.1% 54 0.102213 SELECT rssfeeds_contentfeeditem
# 14 0x3E52CF0261A7C3FF 4.4676 0.9% 44 0.101536 SELECT schedule_occurrence schedule_occurrence.start
# 15 0x9D0BCD3F6731195B 4.2804 0.9% 41 0.104401 SELECT mt_entry mt_placement mt_category
# 16 0x7961BD4C76277EB7 4.0143 0.8% 18 0.223014 INSERT UNION UPDATE UNION mt_session
# 17 0xD2F486BA41E7A623 3.1448 0.6% 21 0.149754 SELECT mt_entry mt_placement mt_category mt_objecttag mt_tag
# 18 0x3B9686D98BB8E054 2.9577 0.6% 11 0.268885 SELECT mt_entry mt_objecttag mt_tag
# 19 0xBB2443BF48638319 2.7239 0.6% 9 0.302660 SELECT rssfeeds_contentfeeditem
# 20 0x3D533D57D8B466CC 2.4209 0.5% 15 0.161391 SELECT mt_entry mt_placement mt_category
이 출력 위에는이 20 가지의 최악의 성능 쿼리에 대한 히스토그램이 있습니다
첫 번째 항목의 히스토그램 예
# Query 1: 0.77 QPS, 0.28x concurrency, ID 0x812D15015AD29D33 at byte 0 __
# This item is included in the report because it matches --limit.
# pct total min max avg 95% stddev median
# Count 36 910
# Exec time 58 336s 101ms 2s 370ms 992ms 230ms 393ms
# Lock time 0 0 0 0 0 0 0 0
# Users 1 mt
# Hosts 905 10.64.95.74:54707 (2), 10.64.95.74:56133 (2), 10.64.95.80:33862 (2)... 901 more
# Databases 1 mt1
# Time range 1321642802 to 1321643988
# bytes 1 1.11M 1.22k 1.41k 1.25k 1.26k 25.66 1.20k
# id 36 9.87G 11.10M 11.11M 11.11M 10.76M 0.12 10.76M
# Query_time distribution
# 1us
# 10us
# 100us
# 1ms
# 10ms
# 100ms ################################################################
# 1s ###
# 10s+
# Tables
# SHOW TABLE STATUS FROM `mt1` LIKE 'mt_entry'\G
# SHOW CREATE TABLE `mt1`.`mt_entry`\G
# SHOW TABLE STATUS FROM `mt1` LIKE 'mt_placement'\G
# SHOW CREATE TABLE `mt1`.`mt_placement`\G
# SHOW TABLE STATUS FROM `mt1` LIKE 'mt_category'\G
# SHOW CREATE TABLE `mt1`.`mt_category`\G
# EXPLAIN
SELECT `mt_entry`.`entry_id`, `mt_entry`.`entry_allow_comments`, `mt_entry`.`entry_allow_pings`, `mt_entry`.`entry_atom_id`, `mt_entry`.`entry_author_id`, `mt_entry`.`entry_authored_on`, `mt_entry`.`entry_basename`, `mt_entry`.`entry_blog_id`, `mt_entry`.`entry_category_id`, `mt_entry`.`entry_class`, `mt_entry`.`entry_comment_count`, `mt_entry`.`entry_convert_breaks`, `mt_entry`.`entry_created_by`, `mt_entry`.`entry_created_on`, `mt_entry`.`entry_excerpt`, `mt_entry`.`entry_keywords`, `mt_entry`.`entry_modified_by`, `mt_entry`.`entry_modified_on`, `mt_entry`.`entry_ping_count`, `mt_entry`.`entry_pinged_urls`, `mt_entry`.`entry_status`, `mt_entry`.`entry_tangent_cache`, `mt_entry`.`entry_template_id`, `mt_entry`.`entry_text`, `mt_entry`.`entry_text_more`, `mt_entry`.`entry_title`, `mt_entry`.`entry_to_ping_urls`, `mt_entry`.`entry_week_number` FROM `mt_entry` INNER JOIN `mt_placement` ON (`mt_entry`.`entry_id` = `mt_placement`.`placement_entry_id`) INNER JOIN `mt_category` ON (`mt_placement`.`placement_category_id` = `mt_category`.`category_id`) WHERE (`mt_entry`.`entry_status` = 2 AND `mt_category`.`category_basename` IN ('business_review' /*... omitted 3 items ...*/ ) AND NOT (`mt_entry`.`entry_id` IN (53441))) ORDER BY `mt_entry`.`entry_authored_on` DESC LIMIT 4\G