sklearn의 sklearn.metrics.classification_report 문서에서 가져온 예가 아래에 있습니다.
내가 이해하지 못하는 것은 클래스가 예측 변수라고 생각되는 각 클래스에 대해 f1 점수, 정밀도 및 리콜 값이있는 이유입니다. f1 점수는 모델의 전체 정확도를 나타냅니다. 또한 지원란에서 무엇을 알려줍니까? 나는 그것에 관한 정보를 찾을 수 없었다.
print(classification_report(y_true, y_pred, target_names=target_names))
precision recall f1-score support
class 0 0.50 1.00 0.67 1
class 1 0.00 0.00 0.00 1
class 2 1.00 0.67 0.80 3
avg / total 0.70 0.60 0.61 5
avg / total
어떻습니까? 열의 의미와 일치하지 않는 것 같습니다 ... 어떻게 계산되고 무엇을 의미합니까?