18

일반적으로 E ( X | Y )E(X|Y)E ( X | Y = y )의 차이점은 무엇입니까 E(X|Y=y)?

이전은 y의 함수 y이고 후자는 x의 함수 x입니까? 너무 혼란 스럽습니다 ..


흠 ... 후자는 x의 함수가 아니라 숫자 여야합니다! 내가 잘못?
David

답변:


23

대략적으로 말해서, 차이 E ( X | Y )E(XY)E ( X | Y = Y는 )E(XY=y) 후자 반면 전자는 랜덤 변수 (어떤 의미에서)를 실현하고 있다는 점이다 E ( X | Y )E(XY) . 예를 들어, ( X , Y ) N ( 0 , ( 1 ρ ρ 1 ) )

(X,Y)N(0,(1ρρ1))
이면 E ( XY )E(XY) 는 랜덤 변수 E (X | Y는 ) = ρ Y .
이자형( XY) = ρ Y.
반대로 Y = y와이= y 가 관찰되면 수량 E ( X Y = y ) = ρ에 더 관심이있을 것입니다이자형( XY= y) = ρ y스칼라 인 y에입니다.

어쩌면 이것은 불필요한 합병증처럼 보이지만 E ( X Y ) 를 그 자체로 임의의 변수로 간주하면 타워 법칙 E ( X ) = E [ E ( X Y ) ]와 같은 것이 의미가 있습니다. 중괄호 내부의 것은 임의적이므로 기대치가 무엇인지 물어볼 수 있지만 E ( X Y = y ) 에 대해서는 임의의 것이 없습니다 . 대부분의 경우 E ( X이자형( XY)이자형( X) = E[ E( XY) ]이자형( XY= y) | Y =y ) = x f X Y ( x y ) d x 

E(XY=y)=xfXY(xy) dx

그런 다음 결과 표현식에서 y 대신에 임의의 변수 Y 를 "플러그인"하여 E ( X Y ) 를 얻 습니다 . 앞서 언급 한 바와 같이, 이러한 것들이 엄격하게 정의되고 그것들을 적절한 방식으로 연결하는 방법과 관련하여 약간의 미묘함이 있습니다. 이것은 근본적인 이론의 일부 기술적 문제로 인해 조건부 확률로 발생하는 경향이 있습니다.E(XY)Yy


8

XXYY 가 랜덤 변수 라고 가정 하십시오.

하자 y를 0y0고정 실수라고 y를 0 = 1y0=1 . 그리고, E [ X | Y = Y 0 ] = E [ X는 | Y = 1 ]E[XY=y0]=E[XY=1] A는 번호 : 이는 인 조건부 기대 값XX 주어진 Y는Y 값을 가지고 11 . 이제 다른 고정 실수 y 1y1 에 대해 예를 들어 y 1 = 1.5입니다y1=1.5 . E [ X | Y = Y 1 ] = E [ X | Y = 1.5 ]E[XY=y1]=E[XY=1.5] 의 조건부 기대치 것 XX 주어진 Y = 1.5Y=1.5 (실수)를. E [ X Y = 1.5 ]E[XY=1.5] E [ X Y = 1 ]E[XY=1] 가 동일한 값을 갖는다 고가정 할 이유가 없습니다. 따라서 우리는 또한 E [ X Y = y ]E[XY=y] 되로서 실수 y 를 실수 E [ X Y = y ]에 매핑하는 실수 함수 g ( y )g(y) 입니다 . 참고있는 OP의 질문에 문 것을 E [ X | Y = y는 ] 의 함수 x는 잘못된 : E [ X | Y = y는 ] 의 실수 함수 y를 .yE[XY=y]E[XY=y]xE[XY=y]y

On the other hand, E[XY]E[XY] is a random variable ZZ which happens to be a function of the random variable YY. Now, whenever we write Z=h(Y)Z=h(Y), what we mean is that whenever the random variable YY happens to have value yy, the random variable ZZ has value h(y)h(y). Whenever YY takes on value yy, the random variable Z=E[XY]Z=E[XY] takes on value E[XY=y]=g(y)E[XY=y]=g(y). Thus, E[XY]E[XY] is just another name for the random variable Z=g(Y)Z=g(Y). Note that E[XY]E[XY] is a function of YY (not yy as in the statement of the OP's question).

As a a simple illustrative example, suppose that XX and YY are discrete random variables with joint distribution P(X=0,Y=0)=0.1,  P(X=0,Y=1)=0.2,P(X=1,Y=0)=0.3,  P(X=1,Y=1)=0.4.

P(X=0,Y=0)P(X=1,Y=0)=0.1,  P(X=0,Y=1)=0.2,=0.3,  P(X=1,Y=1)=0.4.
Note that XX and YY are (dependent) Bernoulli random variables with parameters 0.70.7 and 0.60.6 respectively, and so E[X]=0.7E[X]=0.7 and E[Y]=0.6E[Y]=0.6. Now, note that conditioned on Y=0Y=0, XX is a Bernoulli random variable with parameter 0.750.75 while conditioned on Y=1Y=1, XX is a Bernoulli random variable with parameter 2323. If you cannot see why this is so immediately, just work out the details: for example P(X=1Y=0)=P(X=1,Y=0)P(Y=0)=0.30.4=34,P(X=0Y=0)=P(X=0,Y=0)P(Y=0)=0.10.4=14,
P(X=1Y=0)=P(X=1,Y=0)P(Y=0)=0.30.4=34,P(X=0Y=0)=P(X=0,Y=0)P(Y=0)=0.10.4=14,
and similarly for P(X=1Y=1)P(X=1Y=1) and P(X=0Y=1)P(X=0Y=1). Hence, we have that E[XY=0]=34,E[XY=1]=23.
E[XY=0]=34,E[XY=1]=23.
Thus, E[XY=y]=g(y)E[XY=y]=g(y) where g(y)g(y) is a real-valued function enjoying the properties: g(0)=34,g(1)=23.
g(0)=34,g(1)=23.

On the other hand, E[XY]=g(Y)E[XY]=g(Y) is a random variable that takes on values 3434 and 2323 with probabilities 0.4=P(Y=0)0.4=P(Y=0) and 0.6=P(Y=1)0.6=P(Y=1) respectively. Note that E[XY]E[XY] is a discrete random variable but is not a Bernoulli random variable.

As a final touch, note that E[Z]=E[E[XY]]=E[g(Y)]=0.4×34+0.6×23=0.7=E[X].

E[Z]=E[E[XY]]=E[g(Y)]=0.4×34+0.6×23=0.7=E[X].
That is, the expected value of this function of YY, which we computed using only the marginal distribution of YY, happens to have the same numerical value as E[X]E[X] !! This is an illustration of a more general result that many people believe is a LIE: E[E[XY]]=E[X].
E[E[XY]]=E[X].

Sorry, that's just a small joke. LIE is an acronym for Law of Iterated Expectation which is a perfectly valid result that everyone believes is the truth.


3

E(X|Y)E(X|Y) is the expectation of a random variable: the expectation of XX conditional on YY. E(X|Y=y)E(X|Y=y), on the other hand, is a particular value: the expected value of XX when Y=yY=y.

Think of it this way: let XX represent the caloric intake and YY represent height. E(X|Y)E(X|Y) is then the caloric intake, conditional on height - and in this case, E(X|Y=y)E(X|Y=y) represents our best guess at the caloric intake (XX) when a person has a certain height Y=yY=y, say, 180 centimeters.


4
I believe your first sentence should replace "distribution" with "expectation" (twice).
Glen_b -Reinstate Monica

4
E(XY)E(XY) isn't the distribution of XX given YY; this would be more commonly denotes by the conditional density fXY(xy)fXY(xy) or conditional distribution function. E(XY)E(XY) is the conditional expectation of XX given YY, which is a YY-measurable random variable. E(XY=y)E(XY=y) might be thought of as the realization of the random variable E(XY)E(XY) when Y=yY=y is observed (but there is the possibility for measure-theoretic subtlety to creep in).
guy

1
@guy Your explanation is the first accurate answer yet provided (out of three offered so far). Would you consider posting it as an answer?
whuber

@whuber I would but I'm not sure how to strike the balance between accuracy and making the answer suitably useful to OP and I'm paranoid about getting tripped up on technicalities :)
guy

@Guy I think you have already done a good job with the technicalities. Since you are sensitive about communicating well with the OP (which is great!), consider offering a simple example to illustrate--maybe just a joint distribution with binary marginals.
whuber

1

E(X|Y)E(X|Y) is expected value of values of XX given values of YY E(X|Y=y)E(X|Y=y) is expected value of X given the value of Y is y

Generally P(X|Y) is probability of values X given values Y, but you can get more precise and say P(X=x|Y=y), i.e. probability of value x from all X's given the y'th value of Y's. The difference is that in the first case it is about "values of" and in the second you consider a certain value.

You could find the diagram below helpful.

Bayes theorem diagram form Wikipedia


This answer discusses probability, while the question asks about expectation. What is the connection?
whuber
당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.