scikit-learn을 사용하여 일련의 데이터에 대해 교차 검증을 사용하여 로지스틱 회귀 분석을 수행하고 있습니다 (약 7000 개의 정규 관측 값을 갖는 약 14 개의 매개 변수). 또한 1 또는 0 값을 가진 대상 분류 기가 있습니다.
내가 가진 문제는 사용 된 솔버에 관계없이 수렴 경고가 계속 발생한다는 것입니다 ...
model1 = linear_model.LogisticRegressionCV(cv=10,verbose=1,n_jobs=-1,scoring='roc_auc',solver='newton-cg',penalty='l2')
/home/b/anaconda/lib/python2.7/site-packages/scipy/optimize/linesearch.py:285: LineSearchWarning: The line search algorithm did not converge
warn('The line search algorithm did not converge', LineSearchWarning)
/home/b/anaconda/lib/python2.7/site-packages/sklearn/utils/optimize.py:193: UserWarning: Line Search failed
model2 = linear_model.LogisticRegressionCV(cv=10,verbose=1,n_jobs=-1,scoring='roc_auc',solver='sag',penalty='l2')
max_iter reached after 2 seconds
max_iter reached after 2 seconds
max_iter reached after 2 seconds
max_iter reached after 2 seconds
max_iter reached after 2 seconds
max_iter reached after 2 seconds
max_iter reached after 2 second
model3 = linear_model.LogisticRegressionCV(cv=10,verbose=1,n_jobs=-1,scoring='roc_auc',solver='lbfgs',penalty='l2')
/home/b/anaconda/lib/python2.7/site-packages/sklearn/linear_model/logistic.py:701: UserWarning: lbfgs failed to converge. Increase the number of iterations.
warnings.warn("lbfgs failed to converge. Increase the number "
model4 = linear_model.LogisticRegressionCV(cv=10,verbose=1,n_jobs=-1,scoring='roc_auc',solver='liblinear',penalty='l2')
cg reaches trust region boundary
iter 18 act 1.382e+06 pre 1.213e+06 delta 1.860e+01 f 7.500e+06 |g| 1.696e+06 CG 8
iter 2 act 1.891e+06 pre 1.553e+06 delta 1.060e-01 f 1.397e+07 |g| 1.208e+08 CG 4
iter 4 act 2.757e+04 pre 2.618e+04 delta 1.063e-01 f 1.177e+07 |g| 2.354e+07 CG 4
iter 18 act 1.659e+04 pre 1.597e+04 delta 1.506e+01 f 7.205e+06 |g| 4.078e+06 CG 4
cg reaches trust region boundary
iter 7 act 1.117e+05 pre 1.090e+05 delta 4.146e-01 f 1.161e+07 |g| 9.522e+05 CG 4
iter 31 act 1.748e+03 pre 1.813e+03 delta 2.423e+01 f 6.228e+05 |g| 5.657e+03 CG 14
경고가 표시되지 않게하려면 어떻게해야합니까?
나는이 완벽하거나 근처의 경우인지 궁금 분리 .
—
Sycorax는