A와 B가 양의 관련 변수 인 경우 결과 변수 C에 반대의 영향을 줄 수 있습니까?


22

A는 B와 긍정적으로 관련이 있습니다.

C는 A와 B의 결과이지만 C에 대한 A의 영향은 부정적이며 C에 대한 B의 영향은 긍정적입니다.

이런 일이 일어날 수 있습니까?


이것은 SEM의 모델에서 관계입니다
Reen

1
stats.stackexchange.com/q/33888/3277 은 밀접하게 관련된 질문입니다. 동일하지는 않지만 여기에서 답변을 외삽 할 수 있습니다.
ttnphns

답변:


43

다른 답변은 정말 대단합니다. 실제 사례를 제시합니다.

반대에 대한 직관에도 불구하고 이런 일이 일어날 수 있는지 설명 하고 싶습니다.

이것을 기하학적으로 보십시오!

상관은 벡터 사이의 각도의 코사인입니다. 본질적으로, 당신은 그것이 가능한지 묻고 있습니다.

  • A 는 와 예각을 만든다 ( 양의 상관 관계)B
  • B 는 와 예각을 만든다 ( 양의 상관 관계)C
  • A 는 와 둔각을 만든다 ( 음의 상관 관계)CC

예, 물론 :

여기에 이미지 설명을 입력하십시오

이 예에서 상관 관계를 나타냅니다.ρ

  • A=(0.6,0.8)
  • B=(1,0)
  • C=(0.6,0.8)
  • ρ(A,B)=0.6>0
  • ρ(B,C)=0.6>0
  • ρ(A,C)=0.28<0

당신의 직감이 맞습니다!

그러나 당신의 놀람은 잘못되지 않았습니다.

벡터 사이의 각도는 단위 구의 거리 측정법이므로 삼각형 부등식을 충족합니다.

ABAC+B기음

따라서 이므로코사인에이=ρ(에이,)

아르 코스ρ(에이,)아르 코스ρ(에이,기음)+아르 코스ρ(,기음)

따라서 (이후 된다 감소 에 )코사인[ 0 , π ][0,π]

ρ(A,B)ρ(A,C)×ρ(B,C)(1ρ2(A,C))×(1ρ2(B,C))

그래서,

  • 만약 , 다음ρ(A,C)=ρ(B,C)=0.9ρ(A,B)0.62
  • 만약 , 다음ρ(A,C)=ρ(B,C)=0.95ρ(에이,)0.805
  • 만약 , 다음ρ(에이,기음)=ρ(,기음)=0.99ρ(에이,)0.9602

32

그렇습니다. 두 개의 동시 발생 조건은 반대의 영향을 미칠 수 있습니다.

예를 들면 다음과 같습니다.

  • 터무니없는 말을하는 것은 (B) 재미있는 것과 긍정적으로 관련이 있습니다.
  • 터무니없는 진술 (A)은 선거 승리 (C)에 부정적인 영향을 미칩니다.
  • 접대 (B)는 선거 승리 (C)에 긍정적 인 영향을 미칩니다.

20
가장 좋은 답변이 있습니다. 최고예요 모두가 그렇게 말합니다.
Matthew Drury

1
이 정치적 견해에 동의하지만이 사이트의 답변을 관련없는 정치적 견해의 수단으로 사용하는 것은 나쁜 형태라고 생각합니다.
Kodiologist

14
@Kodiologist이 답변은 후보자 또는 문제에 대해 입장을 취하지 않습니다. (1) 재미있는 후보가 유리한 점 (예 : Ronald Reagan, Bill Clinton, Willie Brown) 및 (2) 매우 도발적인 진술이 도움이되는 것보다 더 많은 상처를 입는 경향이 있습니다 (정치학자인 이유). 이러한 유형의 진술을하지 않는 경향이 있습니다). 이것이 재미없는 지역이라면, 그것을 쓰러 뜨릴 수는 있지만, 내가 쓴 것은 믿을 수 없을 정도로 양성이며 논쟁의 여지가 없다고 생각합니다.
Matthew Gunn

19
답에 직접적인 정치적 언급은 없습니다. 암시적인 참조가있을 수 있지만 어떤 식 으로든 대답의 유효성 또는 적합성에 영향을 미치지 않는다고 생각합니다.
Glen_b-복지국 모니카

28

나는이 자동차 유추 가 질문에 잘 적용되는 것을 들었습니다 .

  • 오르막길 주행 (A)은 가스 (B)를 밟는 운전자와 긍정적으로 관련됩니다.
  • 오르막길 주행 (A)은 차량 속도 (C)에 부정적인 영향을 미칩니다.
  • 가스 (B)를 밟으면 차량 속도 (C)에 긍정적 인 영향을 미칩니다

여기서 핵심은 운전자가 일정한 속도 (C)를 유지하려는 의도이므로 A와 B 사이의 양의 상관 관계는 자연스럽게 그 의도에서 따릅니다. 이 관계로 A, B, C의 끝없는 예를 만들 수 있습니다.

유사점Milton Friedman의 온도 조절기에 대한 해석에서 비롯된 것이며 통화 정책 및 계량 경제학에 대한 흥미로운 분석에서 비롯된 것입니다. 그러나 그것은 질문과 관련이 없습니다.


2
좋은 예입니다. 그러나 '양성 관련'및 '음성 관련'이라는 용어를 통계적 관계 (예 : 상관 관계)로 사용하고 있는지 확실하지 않습니다. op가 의미하는 바입니다.
Lior Kogan

8

예, 이것은 시뮬레이션으로 시연하기에 사소한 것입니다.

양의 상관 관계가있는 2 개의 변수 A와 B를 시뮬레이션합니다.

> require(MASS)
> set.seed(1)
> Sigma <- matrix(c(10,3,3,2),2,2)
> dt <- data.frame(mvrnorm(n = 1000, rep(0, 2), Sigma))
> names(dt) <- c("A","B")
> cor(dt)

          A         B
A 1.0000000 0.6707593
B 0.6707593 1.0000000

변수 C를 만듭니다.

> dt$C <- dt$A - dt$B + rnorm(1000,0,5)

보다:

> (lm(C~A+B,data=dt))

Coefficients:
(Intercept)            A            B  
    0.03248      0.98587     -1.05113  

편집 : 또는 (Kodiologist가 제안한대로) , 및오호(에이,)>0오호(에이,기음)>0오호(,기음)<0

> set.seed(1)
> Sigma <- matrix(c(1,0.5,0.5,0.5,1,-0.5,0.5,-0.5,1),3,3)
> dt <- data.frame(mvrnorm(n = 1000, rep(0,3), Sigma, empirical=TRUE))
> names(dt) <- c("A","B","C")
> cor(dt)
    A    B    C
A 1.0  0.5  0.5
B 0.5  1.0 -0.5
C 0.5 -0.5  1.0

나는 그것을보고 더 나은 생각 cor(C, A)하고 cor(C, B)보다 lm(C ~ A + B)여기. 우리는 예를 들어 B에 대해 통제 된 관계보다는 A와 C의 통제되지 않은 관계에 관심이 있습니다.
Kodiologist

@Kodiologist OP는 의견에서 맥락이 SEM이며 선형 회귀를 암시한다고 말합니다.
Robert Long

@Kodiologist 내 답변에 대한 업데이트 참조 :)
Robert Long

0

기음=+(에이아르 자형영형j(에이))

그런 다음

기음,에이=,에이+에이,에이,에이

C와 A의 공분산은 두 가지 조건에서 음수 일 수 있습니다.

  1. >, 에이,에이<,에이()/
  2. <, 에이,에이>,에이()/
당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.