데밍 회귀 분석을 사용하는 경우


9

현재 두 가지 인 테스트 값을 서로 변환하는 방법을 연구 중입니다.

배경

토양에서 식물 이용 가능한 인을 측정하는 많은 (추출) 방법이 있습니다. 국가마다 다른 방법을 적용하기 때문에 국가 간 P- 불임을 비교하려면 P- 테스트 값 y를 기준으로 P- 테스트 값 x를 계산해야하며 그 반대도 마찬가지입니다. 따라서 반응과 공변량은 상호 교환 가능합니다.

추출 제 1의 P 량 = [mg / 100g 토양]의 P_CAL

추출 제 2의 P 양 = [mg / 100g 토양]의 P_DL

이러한 "변형 방정식"을 확립하기 위해 136 개의 토양 샘플의 P 함량을 CAL 및 DL 추출물로 분석 하였다. 토양 pH, 총 유기 탄소, 총 질소, 점토 및 탄산염과 같은 추가 변수도 측정되었습니다. 목표는 간단한 회귀 모델을 도출하는 것입니다. 두 번째 단계에서는 여러 모델도 있습니다.

데이터의 개요를 제공하기 위해 간단한 선형 (OLS) 회귀선이있는 두 개의 산점도를 보여줍니다. a) CAL-P ~ DL-P에 대한 간단한 OLS 회귀, b) DL-P ~ CAL-P에 대한 간단한 OLS 회귀

질문 :

내 이해에 따르면, respone (y) 및 설명 (x) 변수에 모두 (측정) 오류가 있고 상호 교환 가능한 경우 deming regression이 적합합니다. 데밍 회귀 분석에서는 분산 비율이 알려져 있다고 가정합니다. P 추출 측정의 정확도에 대한 세부 정보가 없으므로 분산 비율을 결정하는 다른 방법이 있습니까? 여기에 어떤 차이가 있습니까? 나는 그것이 계산되지 않았다고 가정 var(DL_P)/var(CAL_P)합니까?

Q1 : 데밍 회귀 분석에 대한 분산 비율을 어떻게 결정합니까?

데밍 회귀 분석의 특수한 경우는 직교 회귀 분석입니다. 분산 비 = 1이라고 가정합니다.

Q2 : 가정 δ = 1이 "거의"정확한지 또는 (거짓) 가정이 높은 예측 오차를 수반하는지 진단하는 방법이 있습니까?

δ = 1이라고 가정하면 직교 회귀는 다음과 같은 (둥근) 출력을 제공합니다.

library(MethComp) deming <- Deming(y=P_CAL, x=P_DL, vr=1)

절편 : 0.75; 슬로프 : 0.71; 시그마 P_DL : 3.17; 시그마 P_CAL : 3.17

위 그림에서 데밍 회귀선을 플로팅하면 데밍 회귀가 a) CAL-P = f (DL-P) 회귀에 매우 가깝지만 b)와 매우 다르다는 것을 알 수 있습니다. b) DL-P = f (CAL-P) 방정식. 여기에 이미지 설명을 입력하십시오

Q3 : 직교 회귀 분석에서 CAL-P = f (DL-P)와 DL-P = f (CAL-P)가 동일한 방정식으로 표현되는 것이 맞습니까? 그렇지 않은 경우 두 가지 모두에 대한 올바른 방정식을 어떻게 도출합니까? 여기서 무엇을 그리워합니까?

두 추출 용액의 특성으로 인해 DL-P 값은 CAL-P 값보다 약 25 % 더 높은 경향이 있으므로 CAL-P = f (DL-P)는 DL-P = f (CAL보다 더 높은 기울기를 가져야합니다. -피). 그러나 경사가 하나만있는 경우에는 데밍 회귀로 표현되지 않습니다. 마지막 질문으로 떠납니다.

Q4 : 데밍 회귀 분석은 내 목적에 맞는 접근 방식입니까?


1
두 표준 편차의 비율은 데밍 회귀 분석에서 선에 수직을 놓을 위치를 결정하기 위해 가정됩니다. 비율이 1이면 분산이 같고 거리가 45도 각도에서 측정 된 것으로 가정합니다. 데이터에서이 비율을 결정할 수 없습니다.
Michael R. Chernick

답변:


2

문제의 일부를 해결하려면 다음을 수행하십시오. 데밍 회귀 분석 은 플롯 패널 B에 적합하지 않은 것으로 보이지만 이는 플롯이 올바르지 않기 때문입니다. 이것이 올바르게 수행되었는지 평가하는 빠른 방법은 데밍 회귀선을 따라 X & Y 값을 보는 것입니다. 패널 A의 DL-P 값의 경우 두 패널에서 동일한 해당 CAL-P 값을 가져야합니다 (OLS의 경우에는 해당되지 않으며 이들의 기본 차이점). 그러나 DL-P = 20 인이 그림에서 패널 A의 CAL-P는 ~ 15, 패널 B의 ~ 27입니다.

오류는 방정식에서 CAL-P와 DL-P 항을 교체하여 데밍 회귀선이 그려진 것으로 보입니다. 패널 A의 방정식은 다음과 같습니다.

CAL-P = 0.75 + 0.71 * DL-P

재정렬, 이는 패널 B의 방정식이 다음과 같아야 함을 의미합니다.

DL-P = (CAL-P-0.75) / 0.71

그리고 아닙니다 :

DL-P = 0.75 + 0.71 * CAL-P (이것은 플롯 된 것입니다)

당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.