내가 2 개의 결과를 가질 수있는 실험을 실행 중이고 2 개의 결과의 기본 "진정한"분포가 모수 및 갖는 이항 분포라고 가정합니다 . .
표준 오류를 계산할 수 있습니다. 의 변화의 형태로부터 :
내가 2 개의 결과를 가질 수있는 실험을 실행 중이고 2 개의 결과의 기본 "진정한"분포가 모수 및 갖는 이항 분포라고 가정합니다 . .
표준 오류를 계산할 수 있습니다. 의 변화의 형태로부터 :
답변:
샘플 크기와 이항 랜덤 변수를 구성하는 베르누이 시행 횟수와 같이 두 가지 방식으로 두 번 사용하는 것 같습니다 . 모호성을 없애기 위해 k 를 사용 하여 후자를 참조합니다.
B i n o m i a l ( k , p ) 분포 에서 독립 표본 이있는 경우 표본 평균의 분산은 다음과 같습니다.
여기서 이고 ¯ X 는 동일한 평균입니다. 이후부터
(1) , 어떤 확률 변수에 대한 , 및 임의의 상수 C .
(2) 독립 랜덤 변수의 합의 분산은 분산의 합과 같습니다 .
의 표준 오차 는 분산의 제곱근입니다. √ . 따라서,
일 때 지적한 공식을 얻습니다. √
때 , 그리고 이항 변수는 단지입니다 베르누이 시행은 , 당신은 당신이 다른 곳에서 본 적이 공식을 얻을 : √
우리는 이것을 다음과 같은 방식으로 볼 수 있습니다 :
이제, 우리는의 차이를 보면 , . 그러나 모든 개별 Bernoulli 실험에 대해 입니다. 이 때문에 실험에서 토스 또는 베르누이 시행 . 이는 에 분산 가 있음을 의미합니다 .
이제 샘플 비율은 주어지며 , 이는 '성공 또는 헤드의 비율'을 제공합니다. 여기서 은 모집단의 모든 실험에 대해 동일한 동전 던지기를 계획하지 않기 때문에 상수입니다.
따라서 입니다.
따라서, (표본 통계량)의 표준 오차 는 √
$x$
gives .
표준 오류와 표준 편차 사이의 초기 게시물에도 약간의 혼란이 있다고 생각합니다. 표준 편차는 분포 분산의 sqrt입니다. 표준 오차는 해당 분포에서 표본의 추정 평균의 표준 편차, 즉 표본을 무한정 여러 번 수행 한 경우 관찰 할 평균의 확산입니다. 전자는 분포의 고유 속성입니다. 후자는 분포의 특성 (평균) 추정치의 품질을 측정 한 것입니다. 알 수없는 성공 확률을 추정하기 위해 N Bernouilli 시행을 실험 할 때 k 성공을 본 후 추정 된 p = k / N의 불확실성은 추정 비율 sqrt (pq / N)의 표준 오차입니다. 여기서 q = 1 -피. 실제 분포는 성공 확률 인 모수 P를 특징으로합니다.