두 개의 히스토그램이 주어지면 비슷한 지 아닌지를 어떻게 평가합니까?
단순히 두 히스토그램을 보는 것으로 충분합니까? 간단한 일대일 매핑은 히스토그램이 약간 다르고 약간 이동하면 원하는 결과를 얻지 못한다는 문제가 있습니다.
어떤 제안?
두 개의 히스토그램이 주어지면 비슷한 지 아닌지를 어떻게 평가합니까?
단순히 두 히스토그램을 보는 것으로 충분합니까? 간단한 일대일 매핑은 히스토그램이 약간 다르고 약간 이동하면 원하는 결과를 얻지 못한다는 문제가 있습니다.
어떤 제안?
답변:
읽을 가치가있는 최신 논문은 다음과 같습니다.
Cao, Y. Petzold, L. 화학 반응 시스템의 확률 론적 시뮬레이션에서 정확도 한계 및 오차 측정, 2006.
이 백서의 초점은 확률 적 시뮬레이션 알고리즘을 비교하는 데 중점을두고 있지만 본질적으로 두 가지 히스토그램을 비교하는 방법이 주요 아이디어입니다.
작성자의 웹 페이지에서 pdf에 액세스 할 수 있습니다 .
두 히스토그램 사이에는 많은 거리 측정이 있습니다. 다음과 같은 방법으로 이러한 측정 값을 잘 분류 할 수 있습니다.
K. Meshgi 및 S. Ishii, "추적 정확도를 높이기 위해 그리드를 사용하여 색상의 히스토그램 확장", Proc. 2015 년 5 월 일본 도쿄 MVA'15
가장 인기있는 거리 기능은 다음과 같습니다.
및
& 헬 링거
및 에서 유동 나타내는 에
및
이 거리 중 일부의 Matlab 구현은 내 GitHub 저장소에서 사용할 수 있습니다 : https://github.com/meshgi/Histogram_of_Color_Advancements/tree/master/distance 또한 당신은 Yossi Rubner, Ofir Pele, Marco Cuturi 및 Haibin Ling과 같은 사람을 검색 할 수 있습니다 최첨단 거리.
업데이트 : 거리에 대한 대안 설명이 여기 저기 문헌에 나와 있으므로 완전성을 위해 여기에 나열합니다.
hist1 < hist2
이 질문에 대한 표준 답변은 카이 제곱 테스트 입니다. KS 테스트는 비닝 된 데이터가 아닌 비닝 된 데이터에 대한 것입니다. 바인드 해제 된 데이터가있는 경우 반드시 KS 스타일 테스트를 사용하지만 히스토그램 만있는 경우 KS 테스트는 적합하지 않습니다.
당신은 Kolmogorov-Smirnov 테스트를 찾고 있습니다. 막대 높이를 각 히스토그램의 모든 관측치의 합계로 나누는 것을 잊지 마십시오.
KS- 검정은 또한 분포의 평균이 서로에 대해 이동되는 경우 차이를보고합니다. 응용 프로그램에서 x 축을 따라 히스토그램의 변환이 의미가없는 경우 먼저 각 히스토그램에서 평균을 빼고 싶을 수 있습니다.
David의 답변에서 알 수 있듯이 KS 검정이 연속 분포를 가정하므로 구간 화 된 데이터에 카이 제곱 검정이 필요합니다. KS 테스트가 부적절한 이유 (naught101의 의견)와 관련하여, 여기에서 제기 할 가치가있는 응용 통계 문헌에서이 문제에 대한 논의가있었습니다.
자연 신문의 3 분의 1에 통계적 오류 가 있다고 주장하는 흥미로운 교환이 시작되었다 ( Garcia-Berthou and Alcaraz, 2004 ). 그러나 후속 논문 ( Jeng, 2006 , " 통계 테스트 오류 통계 테스트 오류 "-아마도 내가 가장 좋아하는 논문 제목)은 Garcia-Berthou와 Alcaraz (2005)가 개별 데이터에 대해 KS 테스트를 사용하여 메타 연구에서 부정확 한 p- 값을보고합니다. Jeng (2006) 백서는이 문제에 대한 훌륭한 토론을 제공하며 개별 데이터를 처리하기 위해 KS 테스트를 수정할 수 있음을 보여줍니다. 이 특정 경우에, 구별은 [0,9], 에서 후행 자릿수의 균일 한 분포 사이의 차이로 요약됩니다. P(x)=1
두 히스토그램 간의 상호 상관 (컨볼 루션)을 계산할 수 있습니다. 그것은 약간의 traslation을 고려할 것입니다.