방금 존경받는 (인기있는) 과학 잡지 (독일 PM, 02/2013, p.36)에서 흥미로운 실험에 대해 읽었습니다 (불행히도 소스가 없음). 직관적으로 결과의 중요성을 의심했기 때문에 주목을 받았지만 제공된 정보는 통계 테스트를 재현하기에 충분했습니다.
연구원들은 추운 날씨에 추워지면 감기에 걸릴 확률이 높아지는 지 궁금했습니다. 그래서 그들은 무작위로 180 명의 학생 그룹을 두 그룹으로 나눕니다. 한 그룹은 발을 찬물에 20 분 동안 붙들어 야했습니다. 다른 사람은 신발을 신었습니다. 나는 재미있는 조작의 종류라고 생각하지만, 다른 한편으로는 나는 의사가 아니고 아마도 의사들은 재미 있다고 생각합니다. 윤리적 인 문제는 제쳐두고 있습니다.
어쨌든, 5 일 후, 치료 그룹의 학생 13 명은 감기에 걸렸지 만 그룹에서 5 명만이 신발을 신었습니다. 따라서이 실험의 승산 비는 2.87입니다.
다소 작은 표본 크기를 감안할 때이 차이가 중요한지 궁금해지기 시작했습니다. 그래서 두 가지 테스트를 수행했습니다.
먼저 정규 근사를 사용하여 비율이 동일한 지 간단한 테스트합니다. 이 테스트는 이고 p = 0.0468 입니다. 제 생각 엔 이것이 연구원들이 테스트 한 것입니다. 이것은 실제로 중요합니다. 그러나이 z 테스트는 정상적인 근사로 인해 실수하지 않은 경우 큰 샘플에서만 유효합니다. 또한 유병률은 다소 작으며 이것이 효과의 신뢰 구간의 적용률에 영향을 미치지 않을지 궁금합니다.
그래서 두 번째 시도는 Monte-Carlo 시뮬레이션과 표준 Pearson Chi-square를 사용한 카이 제곱 독립 테스트였습니다. 여기에 에 대한 p- 값이 있습니다 .
이제는 결과에 대해 모두 안심할 수는 없습니다. 이 데이터를 테스트하는 옵션이 더 있고 두 테스트에 대한 귀하의 생각이 무엇인지 궁금했습니다 (특히 첫 번째, 중요한 테스트의 가정).