답변:
마치 CUDA 9.1
실제로 공식 18.04 저장소에있는 것처럼 보입니다 . 터미널 창에서 다음을 실행하십시오.
sudo apt install nvidia-cuda-toolkit
설치 후 nvcc -V
확인을 위해 실행하십시오 . 이와 비슷한 것을 볼 수 있습니다 :
terrance@terrance-ubuntu:~$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Nov__3_21:07:56_CDT_2017
Cuda compilation tools, release 9.1, V9.1.85
툴킷은 또한 필요한 드라이버를 설치하고를 지원합니다 OpenCL
. 설치 clinfo
하고 실행하면 다음을 볼 수 있습니다.
sudo apt install clinfo
그런 다음 다음과 비슷한 것을 얻습니다.
terrance@terrance-ubuntu:~$ clinfo
Number of platforms 1
Platform Name NVIDIA CUDA
Platform Vendor NVIDIA Corporation
Platform Version OpenCL 1.2 CUDA 9.2.101
Platform Profile FULL_PROFILE
Platform Extensions cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_fp64 cl_khr_byte_addressable_store cl_khr_icd cl_khr_gl_sharing cl_nv_compiler_options cl_nv_device_attribute_query cl_nv_pragma_unroll cl_nv_copy_opts cl_nv_create_buffer
Platform Extensions function suffix NV
Platform Name NVIDIA CUDA
Number of devices 1
Device Name GeForce GTX 760
Device Vendor NVIDIA Corporation
Device Vendor ID 0x10de
Device Version OpenCL 1.2 CUDA
Driver Version 396.24
Device OpenCL C Version OpenCL C 1.2
Device Type GPU
Device Topology (NV) PCI-E, 02:00.0
Device Profile FULL_PROFILE
Device Available Yes
Compiler Available Yes
Linker Available Yes
Max compute units 6
Max clock frequency 1032MHz
Compute Capability (NV) 3.0
Device Partition (core)
Max number of sub-devices 1
Supported partition types None
Max work item dimensions 3
Max work item sizes 1024x1024x64
Max work group size 1024
Preferred work group size multiple 32
Warp size (NV) 32
Preferred / native vector sizes
char 1 / 1
short 1 / 1
int 1 / 1
long 1 / 1
half 0 / 0 (n/a)
float 1 / 1
double 1 / 1 (cl_khr_fp64)
Half-precision Floating-point support (n/a)
Single-precision Floating-point support (core)
Denormals Yes
Infinity and NANs Yes
Round to nearest Yes
Round to zero Yes
Round to infinity Yes
IEEE754-2008 fused multiply-add Yes
Support is emulated in software No
Correctly-rounded divide and sqrt operations Yes
Double-precision Floating-point support (cl_khr_fp64)
Denormals Yes
Infinity and NANs Yes
Round to nearest Yes
Round to zero Yes
Round to infinity Yes
IEEE754-2008 fused multiply-add Yes
Support is emulated in software No
Address bits 64, Little-Endian
Global memory size 2095710208 (1.952GiB)
Error Correction support No
Max memory allocation 523927552 (499.7MiB)
Unified memory for Host and Device No
Integrated memory (NV) No
Minimum alignment for any data type 128 bytes
Alignment of base address 4096 bits (512 bytes)
Global Memory cache type Read/Write
Global Memory cache size 98304 (96KiB)
Global Memory cache line size 128 bytes
Image support Yes
Max number of samplers per kernel 32
Max size for 1D images from buffer 134217728 pixels
Max 1D or 2D image array size 2048 images
Max 2D image size 16384x16384 pixels
Max 3D image size 4096x4096x4096 pixels
Max number of read image args 256
Max number of write image args 16
Local memory type Local
Local memory size 49152 (48KiB)
Registers per block (NV) 65536
Max number of constant args 9
Max constant buffer size 65536 (64KiB)
Max size of kernel argument 4352 (4.25KiB)
Queue properties
Out-of-order execution Yes
Profiling Yes
Prefer user sync for interop No
Profiling timer resolution 1000ns
Execution capabilities
Run OpenCL kernels Yes
Run native kernels No
Kernel execution timeout (NV) Yes
Concurrent copy and kernel execution (NV) Yes
Number of async copy engines 1
printf() buffer size 1048576 (1024KiB)
Built-in kernels
Device Extensions cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_fp64 cl_khr_byte_addressable_store cl_khr_icd cl_khr_gl_sharing cl_nv_compiler_options cl_nv_device_attribute_query cl_nv_pragma_unroll cl_nv_copy_opts cl_nv_create_buffer
NULL platform behavior
clGetPlatformInfo(NULL, CL_PLATFORM_NAME, ...) NVIDIA CUDA
clGetDeviceIDs(NULL, CL_DEVICE_TYPE_ALL, ...) Success [NV]
clCreateContext(NULL, ...) [default] Success [NV]
clCreateContextFromType(NULL, CL_DEVICE_TYPE_DEFAULT) No platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_CPU) No devices found in platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_GPU) No platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_ACCELERATOR) No devices found in platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_CUSTOM) Invalid device type for platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_ALL) No platform
ICD loader properties
ICD loader Name OpenCL ICD Loader
ICD loader Vendor OCL Icd free software
ICD loader Version 2.2.11
ICD loader Profile OpenCL 2.1
18.04LTS에 NVIDIA 그래픽 드라이버를 설치하려면 다음 단계를 수행하십시오.
터미널 창에서 다음을 입력하십시오.
sudo apt-add-repository ppa:graphics-drivers/ppa
그런 다음 업데이트를 실행하십시오.
sudo apt update
그런 다음 그래픽 드라이버를 설치하십시오.
sudo apt install nvidia-driver-396
재부팅 후에 nvidia-smi
는 설치되어 있는지 확인할 수 있습니다 .
terrance@terrance-ubuntu:~$ nvidia-smi
Wed May 2 22:38:14 2018
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 396.24 Driver Version: 396.24 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 760 Off | 00000000:02:00.0 N/A | N/A |
| 49% 51C P0 N/A / N/A | 262MiB / 1998MiB | N/A Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 Not Supported |
+-----------------------------------------------------------------------------+
도움이 되었기를 바랍니다!
nvidia-smi
터미널 창에서 실행하십시오 .
graphics-drivers
ppa 에서 그것을 설치하기 위해 내 대답을 업데이트하겠습니다
랩톱에 CUDA를 설치했지만 gcc-6 문제가 발생하기 전까지는 그대로 붙어있었습니다. 요약하면 다음과 같습니다.
1) gcc-6, g ++-6 설치 (CUDA는 gcc-6 필요) 2) / usr / bin에 루트로 gcc, gcc-ar, gcc-nm, gcc-ranlib 및 g ++를 제거하거나 이름을 바꿉니다 (있는 경우). 존재하는 경우, ln -s gcc-6 gcc; ln -s gcc-ar-6 gcc-ar; ln -s gcc-nm-6 gcc-nm; ln -s gcc-ranlib-6 gcc-ranlib; 그리고 ln -s g ++-6 g ++