이 존재 하는가 , 대칭 그룹의 일부 가족이있는 NP-또는 P-완전한 언어 G N (또는 준군을 세트에 (다항식 시간),하지만 그때 알고리즘 질문이 더 개방 될) 행동 L , N = { L ∈ L ∣ | l | = n } 궤도가 거의없는 것, 즉 | L n / G n | < N C 충분히 큰위한 N 일부 C , 및 그 G의 N 효율적으로 주어질 수 있습니까?
여기서 요점은 이와 같은 언어 / 그룹을 찾은 경우 에서 다항식 시간 그룹 작업에서 일반 양식을 찾을 수 있으면 L 을 P T I M E 축소하여 희소 언어로 줄일 수 있다는 것입니다. 주어진 대한 정규형 계산 N을 , 그 의미 P = N P 또는 L = P처음에 NP- 완료 또는 P- 완전 언어를 선택했는지 여부에 따라 따라서 희박 궤도를 가진 그러한 그룹이 없거나 정상적인 양식을 계산하는 것이 모든 그러한 그룹에 대해 어려운 것으로 보이거나 이러한 결과 중 하나가 우리의 대부분이 믿지 않는 것으로 생각합니다. 또한 만약 우리가 정상적인 형태 대신 궤도에 대한 등가 관계를 계산할 수 있다면, 여전히 에서 불균일하게 할 수있는 것처럼 보인다 . 다른 사람들이 이것에 대해 생각하기를 바라고 있습니다.