다항식의 공동 영역에 대한 Base-k 표현-문맥이 없는가?


14

Jeffrey Shallit의 Automata 이론두 번째 코스 4 장 에서 다음과 같은 문제가 공개적으로 나열되어 있습니다.

하자 P는 ( N )p(n) 와 같은 것이 합리적 계수와 다항식 P ( N ) Np(n)N 모든 N NnN . 입증 또는 반증하는 모든 정수의베이스 K 표현 언어 문맥 자유 경우와 정도에만 있다 .{p(n)n0}{p(n)n0}pp11

현재 상태는 어떻습니까 (2018 년 10 월 기준)? 입증 되었습니까? 특별한 경우는 어떻습니까?


1
만약 (단항 표현)를 심지어 간단한 문맥 자유 (잘 알려진 비 CF 언어 아닌 )k = 1 p ( n ) = n 2 L = { 1 n 2 }k=1p(n)=n2L={1n2}
MARZIO 드 BIASI

@MarzioDeBiasi 소위 단항 표현은 기본 이 아닙니다 . 실제 기지 -의 유일한 정수 표현 가능한 될 것이다 . 111100
에밀 예라 벡은 모니카 지원

1
@ EmilJeřábek : 많은 맥락에서 base-1은 "단항 표현"의 별칭 이라고 생각합니다 .
Marzio De Biasi

답변:


10

물론 입니다.k 2k2

한때 문제를 해결한다고 주장하는 Horváth의 원고가 있었지만 여러 곳에서 불분명했으며 내 지식은 결코 출판되지 않았습니다.

내가 아는 한, 문제는 여전히 열려 있습니다. 물론 한 가지 의미는 쉽다.


k = 2로 이미 해결 k=2되었습니까? (나는 그것을 증명하는 아이디어가 K = 2를k=2 하고 같은 기술을 작동하는 경우 아마도 다른 기지에 적용 할 수있다)
MARZIO 드 BIASI

내 답변에 대한 귀하의 의견을 매우 기쁘게 생각합니다.
domotorp December

귀하의 주장 된 해결책을 이해할 수 없습니다. 죄송합니다.
Jeffrey Shallit

더 자세한 내용으로 다른 답변을 게시했습니다. 전체 진술은 매우 복잡하므로 주요 아이디어가있는 간단한 보조 정리를 추가했습니다.
domotorp

3

이것은 k = 2k=2L = { [ n 2 ] 2n 1 }L={[n2]2n1} 에 대한 증명 스케치입니다 . 여기서, [ N (2) ] 2[n2]2 의 이진 표현 N 2n2 . 명확성을 높이기 위해 이진 문자열의 최하위 비트를 왼쪽에 배치합니다 (예 : [ 4 2 ] 2 = 00001)[42]2=00001 .

핵심 아이디어는 LL 에 컨텍스트가 없다고 가정 한 다음 간단한 정규 언어 RR 과 교차하는 "단순화"하는 것입니다 . 새로운 언어 L RLR 은 여전히 ​​문맥이 없으며 여전히 이진 사각형 표현을 포함해야한다. 그런 다음 정사각형이 아닌 이진 문자열을 얻기 위해 CF 언어에 펌핑 보조 정리를 적용합니다.

유한 한 1 자리 숫자 만 포함하는 정규 단어와 LL 을 교차 시키는 것은 유망하지 않습니다. 그것은 네 그까지 밝혀 1 자리 ( R = { 0 * 1 } , { 0 * 10 * 1 } , { 0 *를 10 * 10 * 1 } , { 0 * 10 * 10 * 10 * 1 } ) 우리가 얻을 CF 언어; 그리고 5와 111(R={01},{0101},{010101},{01010101})1 숫자 우리는 명백히 어려운 숫자 이론 문제를 얻는다.

유망한 접근법은 LLR = 1 로 교차시키는 것입니다.0 +1 +0 +1R=10+1+0+1 ; LL 을 제곱으로 제한하는 것과 같습니다.

n 2 = 2 0 + 2 a ( ( 2 b1 ) + 2 b + c ) , 1 < a , b , c

n2=20+2a((2b1)+2b+c),1<a,b,c

(이진 표현 이 중간 에 1 s 의 시퀀스를 제외한 모든 0을0 포함하는 비공식 제곱 ).1

    n        n^2  n                  n^2
   39       1521  111..1             1...11111.1
  143      20449  1111...1           1....1111111..1
  543     294849  11111....1         1.....111111111...1
 2111    4456321  111111.....1       1......11111111111....1
 8319   69205761  1111111......1     1.......1111111111111.....1
33023 1090518529  11111111.......1   1........111111111111111......1
                  LSB          MSB   LSB                         MSB

몇 가지 노력으로 다음을 증명할 수 있습니다.

정리 : 숫자 2 0 + 2 a ( ( 2 b - 1 ) + 2 b + c ) ;0 < c , 3 < a < b20+2a((2b1)+2b+c);0<c,3<a<b

b = 2 a - 3 , c = a 3

b=2a3,c=a3

(증거가 꽤 길어서 블로그에 게시하겠습니다)

이 시점에서, 우리는 L RLR 이 펌핑 렘마 ( 100..0011 ... 1100.001100..0011...1100.001 스트링 의 최대 두 개의 "세그먼트"를 펌핑 할 수 있음)를 사용하여 컨텍스트가 없음을 쉽게 증명할 수 있습니다 . 따라서 LL 에는 컨텍스트가 없습니다.

아마도 같은 기술이 모든베이스 k에k 적용될 수 있습니다 .


3
염기 2의 ( n 2 ) 에 대한 결과 는 오랫동안 알려져왔다. 문제는 정수를 정수에 매핑하는 모든 다항식과 모든 기본에 대해 이와 같은 구조를 만드는 것입니다. (n2)
Jeffrey Shallit

1
우리는 매우 비슷합니다. 나는 완전히 다른 접근법을 취했지만 지난 며칠 동안이 문제에 대해 생각했습니다.
domotorp

3

증거가 있다고 생각합니다. 증거는이 정리에서 나옵니다.

렘마 문맥이없는 언어 L의L 경우, 무한히 많은 n에n 대해 같은 길이의 n 6 개의n6 단어 가 있고 첫 n 2 개의n2 문자가 같고 마지막 n 개의n 문자가 다른 경우 (쌍으로), BB 는 무한히 많아야합니다 마지막 B 문자 에서만 다른 동일한 길이의 u , v Lu,vL 쌍 .B

그래서 만약 uVv 진수를 나타내고, 그들의 차이는 최대있을 것 2 B2B 다항식 불가능 무한 자주. 반면에 일부 숫자 이론을 사용하면 모든 정수 값 다항식 p에p 대해 조건이 충족됨을 알 수 있습니다 . f ( x i ) f ( x j )x 1 , , x n 6x1,,xn6 을 취하십시오. 그런 다음 각 단어에 충분히 큰 수의 N 을 추가 하여 원하는 단어 f (f(xi)f(xj)Nx i + N )f(xi+N) .

정리의 증거. 조건을 만족하는 길이가 같은 n 6 단어 w 1 , , w n 6 이되도록 충분히 큰 n을n 취하십시오 . 각 w 제가 그것이 문맥 자유 문법에서 생성 될 수있는 방식으로 수정. (경고! 저는이 분야의 전문가가 아니므로 적절한 용어를 사용하지 않을 수 있습니다.)n6w1,,wn6wi

bc 가 모두 A 에서 파생 되었지만 bB 에서 파생 되고 cC 에서 파생 된 경우 규칙 A B CABC 를 적용하면 최종 단어의 두 문자 bc분리 된다고 가정 하십시오 . 대부분의 각 룰 분할 O ( 1 ) 의 문자 w 나는 서로.bcbcAbBcCO(1)wi

어느 w Iwi 있을 것이다 Ω ( N )Ω(n) 제 중에서 연속 문자 N 2n2 마지막 가운데 두 글자되도록 일부 연속 규칙에 의해 서로 분할 문자 N의n 다음 규칙을 적용하는 동안 문자가 서로 분리하지 않는다. 우리가 편지에 대한 집합 적으로 이러한 규칙을 작성하는 경우 w 내가wi 같은 B 1 B 2 내가 ... B N 후, 마지막로부터 편지 n 개의 문자가에서 파생되지 않은 B의 J 에 대한AiB1iB2iBninBjij<nj<n, and B1iB2iBn1iB1iB2iBn1i are all converted into some part of the first n2n2 letters. We can apply the pumping lemma to the rule AiB1iB2iBniAiB1iB2iBni if nn is large enough.

There are only (n22)(n22) choices for the interval of Ω(n)Ω(n) letters, O(n)O(n) options about what the pumping lemma gives (as it has O(1)O(1) length), so by the pigeonhole principle there will be two words for which these are all the same. But then after pumping we can obtain an arbitrarily long common initial part for these two words, while we know that they'll differ only in their last nn bits.


1

Note. This is a much more detailed version of my other answer, as that didn't seem to be comprehensible enough. I've tried to convert it to resemble more standard pumping lemmas, but the full proof got way to complex. I recommend to read the statement of the first two lemmas to understand the main idea, then the statement of the Corollary, and finally the end, where I prove why the Corollary implies the answer to the question.

The proof is based on a generalization of the pumping lemma. The lemma that we need is quite elaborate, so instead of stating it right away, I start with some easier generalizations, eventually building up to more complicated ones. As I've later learned, this is very similar to the so-called interchange lemma.

Twin Pumping Lemma. For every context-free language LL there is a pp such that from any pp words s1,,spLs1,,spL we can select two, ss and ss, that can be written as s=uvwxys=uvwxy and s=uvwxys=uvwxy such that 1|vx|p1|vx|p, 1|vx|p1|vx|p and every word ˉuˉv1ˉvnˉwˉxnˉx1ˉyLu¯v¯1v¯nw¯x¯nx¯1y¯L, where ˉww¯ can be either ww or ww, and similarly, ˉviv¯i can be either vv or vv and ˉxix¯i can be either xx or xx, but only such that ˉvi=vv¯i=v if and only if ˉxi=xx¯i=x (thus ˉvi=vv¯i=v if and only if ˉxi=xx¯i=x), and ˉu=uu¯=u if and only if ˉy=yy¯=y and ˉu=uu¯=u if and only if ˉy=yy¯=y. Moreover, if instead of pp, we are given p(n+44)p(n+44) words of length nn, we can additionally suppose for the selected two words that |u|=|u||u|=|u|, |v|=|v||v|=|v|, |w|=|w||w|=|w|, |x|=|x||x|=|x| and |y|=|y||y|=|y|.

This statement can be proved essentially the same way as the pumping lemma, we just need to pick some ss and ss for which the same rule is pumped. This can be done if pp is large enough since there are only a constant number of rules. In fact, we don't even need that the same rule is pumped, but only that the non-terminal symbol is the same in the pumped rule. For the moreover part, notice that for a word of length nn there are only (n+44)(n+44) options it can be broken into five subwords, thus the statement follows from the pigeonhole principle.

Next we give another way of generalizing the pumping lemma (and later we'll combine the two).

Nested Pumping Lemma. For every context-free language LL there is a pp such that for any kk any word sLsL can be written as s=uv1vkwxkx1ys=uv1vkwxkx1y such that i 1|vixi|pi 1|vixi|p and for every sequence (ij)mj=1(ij)mj=1 the word uvi1vimwximxi1yLuvi1vimwximxi1yL.

Note that the indices ijij can be arbitrary from 11 to kk, the same index can occur multiple times. The proof of the Nested Pumping Lemma is essentially the same as the original pumping lemma's, we just need to use that we obtain the same non-terminal symbol from itself kk times - this is true if we do p(k1)+1p(k1)+1 steps (instead of the pp from the original pumping lemma). We can also strengthen Ogden's lemma in a similar way.

Nested Ogden's Lemma. For every context-free language LL there is a pp such that for any kk marking any at least pkpk positions in any word sLsL, it can be written as s=uv1vkwxkx1ys=uv1vkwxkx1y such that i 1i 1 '# of marks in vixivixi'pkpk and for every sequence (ij)mj=1(ij)mj=1 the word uvi1vimwximxi1yLuvi1vimwximxi1yL.

Unfortunately, in our application pkpk would be too large, so we need to weaken the conclusion to allow non-nested vivi-xixi pairs. Luckily, using Dilworth, the structure stays simple.

Dilworth Ogden's Lemma. For every context-free language LL there is a pp such that for any k, marking any at least pk positions in any word sL, it can be written either as

case (i): s=uv1vkwxkx1y, or as

case (ii): s=uv1w1x1vwxy,

such that i 1 '# of marks in vixi'pk and for every sequence (ij)mj=1,

in case (i) the word uvi1vimwximxi1yL, and

in case (ii) the word uvi11w1xi11viwxiyL.

Proof: Take the derivation tree generating s. Call a non-terminal recurring if it appears again under itself in the derivation tree. By expanding the rule set, we can suppose that all non-terminal symbols are recurring in the derivation tree. (This is to be understood that we might have eliminated their recurrence; this doesn't matter, the point is that they can be pumped.) There are at least pk leaves that correspond to a marked position. We look at the nodes where two marked letters split. There are at least Ω(pk) such nodes. By the pigeonhole principle, at least Ω(pk) correspond to the same non-terminal. Using Dilworth, Ω(pk) of them are in a chain or Ω(p) are in an antichain, giving cases (i) and (ii), respectively, if p is large enough.

Now we are ready to state a big combination lemma.

Super Lemma. For every context-free language L there is a p such that for any k, marking the same at least pk positions in Nmax(pn2k+2,pn3+1) words s1,,sNL, each of length n, there are two words, s and s, that can be written as s=uv1vkwxkx1y and s=uv1vkwxkx1y OR as s=uv1w1x1vwxy and s=uv1w1x1vwxy such that the respective lengths of the subwords are all the same, i.e., |u|=|u|, |vi|=|vi|, etc., and i vixi contains a mark, and for every sequence (ij)mj=1 the word ˉuˉvi1ˉvimˉwˉximˉxi1ˉyL OR ˉuˉvi11ˉw1ˉxi11ˉviˉwˉxiˉyL, respectively, where ˉz stands for z or z, i.e., we can freely mix the intermediate subwords from s and s, but only such that ˉu=u if and only if ˉy=y etc.

Proof sketch of Super Lemma: Apply the Dilworth Ogden's Lemma for each si. There are (n+2k+22k+2) and (n+3+13+1) possible options, respectively, where the boundaries between the subwords of si can be. There are a constant number of non-terminals in the language, thus by the pigeonhole principle, if p is large enough, the same non-terminal is pumped in the k/ rules for at least two words, s and s, that also have the same subword boundaries.

Unfortunately, the number N that comes from this lemma is too large for our application. We can, however, decrease it by demanding fewer coincidences among the subwords. Now we state the lemma that we'll use.

Special Lemma. For every context-free language L there is a p such that for any k marking the same at least pk positions in N=pkn2 words s1,,sNL, each of length n, there are two words, s and s, that can be written either as s=uv1vkwxkx1y and s=uv1vkwxkx1y such that either

case (i): i<k such that |xi|=|xi|=0, |uv1vi1|=|uv1vi1|, and |vi|=|vi| (i.e., the two latter conditions mean that the position of vi is the same as the position of vi), OR

case (ii): i<k |xi|1, |xi|1, |uv1vk1|=|uv1vk1| and |vkwxk|=|vkwxk| (i.e., these two conditions mean that the position of vkwxk is the same as the position of vkwxk),

and (for both cases) i vixi contains a mark, and for every sequence (ij)mj=1 the word ˉuˉvi1ˉvimˉwˉximˉxi1ˉyL, where ˉz stands for z or z, i.e., we can freely mix the intermediate subwords from s and s, but only such that ˉu=u if and only if ˉy=y etc., OR

case (iii): s and s can be written as s=uv1w1x1v2w2x2y and s=uv1w1x1v2w2x2y such that |u|=|u| and |v1w1x1|=|v1w1x1|, and i vixi contains a mark, and uvh1w1xh1v2w2x2yL and uvh1w1xh1v2w2x2yL.

The proof only differs from the Super Lemma's that there are k(n2) possible options for a word in case (i), which leaves (n2) options for case (ii), while in case (iii) there are (n2) options.

Corollary. If for every p there are t and n with np(t+1)+t such that there are N=n3 words of length n in a context-free language L whose first p(t+1) letters are the same for each word, and their last t letters are different for each pair or words (i.e., the words look like si=sbegismidisendi such that |sbegi|=p(t+1), |smidi|=np(t+1)t, |sendi|=t, and ij sbegi=sbegj and sendisendj), then there is a B such that there are infinitely many pairs of words ahbhL of equal length that differ only in their last B letters.

Proof: Take k=t+1 and apply the Special Lemma for our N words using N=n3p(t+1)n2, marking the first p(t+1) letters (that are the same in every word) to obtain s=uv1vt+1wxt+1x1y and s=uv1vt+1wxt+1x1y OR s=uv1w1x1v2w2x2y and s=uv1w1x1v2w2x2y.

If we are in case (i) of the Special Lemma, i.e., there is an i such that |xi|=|xi|=0, |uv1vi1|=|uv1vi1|, and |vi|=|vi|, then uv1vi1=uv1vi1 and vi=vi also hold, as vi+1wxi+1 needs to contain a marked letter, thus the subwords preceding vi+1 consist of only marked letters, and these are the same in s and s. We can take the words ah=uv1vhivtwxtx1y and bh=uv1vhivi+1vtwxtx1y to obtain the desired pairs; since these words end the same way as s and s, ahbh and they differ only in their last bounded many letters.

If we are in case (ii) of the Special Lemma, i.e., i<k |xi|1, |xi|1, |uv1vt|=|uv1vt| and |vt+1wxt+1|=|vt+1wxt+1|, then uv1vt=uv1vt also holds, similarly as in the previous case. Now we can take ah=uv1vtvht+1wxht+1xtx1y and bh=uv1vtvht+1wxht+1xtx1y; since |xtx1y|=|xtx1y|t, these words certainly end differently and can differ only in their last bounded many letters. (Note that this is the only place where we really need that we can pump one word with a subword of the other one.)

If we are in case (iii) of the Special Lemma, i.e., s=uv1w1x1v2w2x2y and s=uv1w1x1v2w2x2y such that |u|=|u| and |v1w1x1|=|v1w1x1|, then u=u and v1w1x1=v1w1x1 also hold, similarly as in the previous cases. Now we can take ah=uvh1w1xh1v2w2x2yL and bh=uvh1w1xh1v2w2x2yL; since v2 contains a marked letter, |v2w2x2y|t, thus these words certainly end differently and can differ only in their last bounded many letters.

This finishes the proof of the Corollary. Now let's see how to prove the original question from the Corollary.

Final proof. First we show that the condition of the Corollary is satisfied for every integer valued polynomial f. Set t=p1 and n=Cp for some large enough C=C(f). The plan is to take some numbers x1,,x2N (where N=2n3) for which f(xi)f(xj), and then add some sufficiently large number z to each of them to obtain the desired words si=f(xi+z). If the degree of f is d, then at most d numbers can take the same value, thus we can select x1,,x2N from the first 2dN numbers, which means that they have log(dn) digits. In this case f(xi)=O((dN)d), thus each f(xi) will have at most dlogN+O(1)=O(logn) digits. If we pick z to be an n/d digit number, then f(z) will have n digits, and for each f(xi+z) only the last O(logn) digits can differ. The f(xi+z) will all have n or n+1 digits, thus at least half, i.e., N of them have the same length; these will be the si.

From the conclusion of the Corollary we obtain infinitely many pairs of numbers ah and bh, such that |ahbh|2B, which is clearly impossible for polynomials.

당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.