의문:
AC 0 의 명시 적 함수에 대해 가장 잘 알려진 공식 크기 하한은 무엇입니까 ? 하한이 인 명시 적 기능이 있습니까?
배경:
대부분의 하한과 마찬가지로 수식 크기의 하한은 구하기 어렵습니다. 표준 범용 게이트 세트 {AND, OR, NOT}에 대한 공식 크기 하한에 관심이 있습니다.
이 게이트 세트에서 명시 적 함수에 대해 가장 잘 알려진 공식 크기 하한은 Andreev에 의해 정의 된 함수에 대해 입니다. 이 범위는 Håstad에 의해 보여졌으며 Andreev의 Ω ( n 2.5 - o ( 1 ) ) 의 하한을 개선했습니다 . 또 다른 명시적인 하한 은 패리티 함수에 대한 Khrapchenko의 Ω ( n 2 ) 하한입니다.
그러나이 두 기능은 AC 0에 없습니다 . AC 0 에서 2 차 (또는 더 나은) 하한을 갖는 명시 적 함수를 알고 있는지 궁금합니다 . 내가 알고있는 최선의 경계는 Nechiporuk가 보여주는 것처럼 요소 구별 기능에 대한 하한입니다. 요소 구별 기능은 AC 0 에 있으므로 Ω ( n 2 / log n ) 보다 나은 명시 적 AC 0 기능 , 바람직하게는 Ω ( n 2 ) 에 대한 하한을 찾고 있습니다.
더 읽을 거리 :
이 주제에 대한 훌륭한 자료는 Stasys Jukna의 "Boolean Function Complexity : Advances and Frontiers"입니다. 책 초안은 그의 웹 사이트에서 무료로 구할 수 있습니다.