Keras의 초보자이며 라이브러리가 실제로 어떻게 작동하는지 이해하기 위해 MNIST 예제로 시작했습니다. Keras 예제 폴더에서 MNIST 문제의 코드 스 니펫은 다음과 같습니다.
import numpy as np
np.random.seed(1337) # for reproducibility
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from keras.utils import np_utils
batch_size = 128
nb_classes = 10
nb_epoch = 12
# input image dimensions
img_rows, img_cols = 28, 28
# number of convolutional filters to use
nb_filters = 32
# size of pooling area for max pooling
nb_pool = 2
# convolution kernel size
nb_conv = 3
# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols)
X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
..........
여기서 재구성 기능을 이해할 수 없습니다. 무엇을하고 있으며 왜 적용 했습니까?