답변:
다음은 Martin v. Löwis의 표현을 기반으로 한 일부 목록 함수입니다 .
cons = lambda el, lst: (el, lst)
mklist = lambda *args: reduce(lambda lst, el: cons(el, lst), reversed(args), None)
car = lambda lst: lst[0] if lst else lst
cdr = lambda lst: lst[1] if lst else lst
nth = lambda n, lst: nth(n-1, cdr(lst)) if n > 0 else car(lst)
length = lambda lst, count=0: length(cdr(lst), count+1) if lst else count
begin = lambda *args: args[-1]
display = lambda lst: begin(w("%s " % car(lst)), display(cdr(lst))) if lst else w("nil\n")
어디 w = sys.stdout.write
이중 연결 목록은 Raymond Hettinger의 정렬 된 세트 레시피 에서 널리 사용되지만 , 단일 연결 목록은 Python에서 실질적인 가치가 없습니다.
교육을 제외한 모든 문제에 대해 Python에서 단일 링크 목록을 사용한 적이 없습니다 .
Thomas Watnedal 은 훌륭한 교육 자료를 제안 했습니다 . 컴퓨터 과학자처럼 생각하는 방법, 17 장 : 연결 목록 :
연결된 목록은 다음 중 하나입니다.
화물 객체 및 링크 된 목록에 대한 참조를 포함하는 노드.
class Node:
def __init__(self, cargo=None, next=None):
self.car = cargo
self.cdr = next
def __str__(self):
return str(self.car)
def display(lst):
if lst:
w("%s " % lst)
display(lst.cdr)
else:
w("nil\n")
일부 필요에 따라 deque 도 유용 할 수 있습니다. O (1) 비용으로 deque의 양쪽 끝에 항목을 추가하고 제거 할 수 있습니다.
from collections import deque
d = deque([1,2,3,4])
print d
for x in d:
print x
print d.pop(), d
deque
유용한 데이터 타입이 (가 C 레벨에서 이중 연결리스트를 이용하여 구현되지만), 그것은 링크 된리스트는 아니다. 따라서 " 파이썬에서 링크 된리스트 대신에 무엇을 사용 하겠습니까?" 이 경우 첫 번째 대답은 (필요한 경우) 일반 파이썬 목록이어야합니다 (연결된 목록이 아닙니다).
linked_list[n]
O (n)이므로 인덱싱을 금지합니다 (no ). 대기열에서 제거하면 O (1)에서 수행됩니다. 그러나 목록에 반복자를 제공 한 연결된 목록은 O (1) 삽입 및 제거를 허용 할 수 있지만 deques는 벡터와 같이 O (n)입니다. (앞면과 끝 부분을 제외하고, deque와 링크 된 목록이 모두 O (1)입니다. deque는 O (1)로 상각 될 가능성이 있습니다. 그러나 연결된 목록은 그렇지 않습니다.)
O(n)
). "거의 모든 방법"이 큰 O의 차이를 무시할 수 있다면, 파이썬 내장 목록을 pop (0)이 아닌 경우 deque로 사용할 수 있기 때문에 명령문은 의미가 없습니다. (0, v) 큰 O 보장 .
나는 다른 날에 이것을 썼다
#! /usr/bin/env python
class Node(object):
def __init__(self):
self.data = None # contains the data
self.next = None # contains the reference to the next node
class LinkedList:
def __init__(self):
self.cur_node = None
def add_node(self, data):
new_node = Node() # create a new node
new_node.data = data
new_node.next = self.cur_node # link the new node to the 'previous' node.
self.cur_node = new_node # set the current node to the new one.
def list_print(self):
node = self.cur_node # cant point to ll!
while node:
print node.data
node = node.next
ll = LinkedList()
ll.add_node(1)
ll.add_node(2)
ll.add_node(3)
ll.list_print()
list_print()
합니다.
허용되는 답변은 다소 복잡합니다. 보다 표준적인 디자인은 다음과 같습니다.
L = LinkedList()
L.insert(1)
L.insert(1)
L.insert(2)
L.insert(4)
print L
L.clear()
print L
Thomas Watnedal이 권장 LinkedList
하는 간단한 C ++ 디자인 및 17 장 : 링크 된 목록을 기반으로 하는 간단한 클래스 입니다.
class Node:
def __init__(self, value = None, next = None):
self.value = value
self.next = next
def __str__(self):
return 'Node ['+str(self.value)+']'
class LinkedList:
def __init__(self):
self.first = None
self.last = None
def insert(self, x):
if self.first == None:
self.first = Node(x, None)
self.last = self.first
elif self.last == self.first:
self.last = Node(x, None)
self.first.next = self.last
else:
current = Node(x, None)
self.last.next = current
self.last = current
def __str__(self):
if self.first != None:
current = self.first
out = 'LinkedList [\n' +str(current.value) +'\n'
while current.next != None:
current = current.next
out += str(current.value) + '\n'
return out + ']'
return 'LinkedList []'
def clear(self):
self.__init__()
insert
특별한 경우가 아니므로 elif
절을 완전히 제거 할 수 있습니까?
다음은 파이썬의 시퀀스 유형과 비슷한 인터페이스를 가진 약간 더 복잡한 버전의 링크 된 목록 클래스입니다 (예 : 인덱싱, 슬라이싱, 임의 시퀀스와의 연결 등 지원). O (1) 접두어를 가져야하며, 튜플과 상호 교환없이 사용할 수 있어야하며 데이터를 복사하지 않으면 데이터를 복사하지 않습니다.
파이썬 클래스는 분명히 조금 더 무겁기 때문에 lisp cons 셀만큼 공간이나 시간 효율적이지 않을 것입니다 ( "__slots__ = '_head','_tail'
메모리 사용을 줄이기 위해 "로 있습니다). 그러나 원하는 큰 O 성능 특성을 갖습니다.
사용 예 :
>>> l = LinkedList([1,2,3,4])
>>> l
LinkedList([1, 2, 3, 4])
>>> l.head, l.tail
(1, LinkedList([2, 3, 4]))
# Prepending is O(1) and can be done with:
LinkedList.cons(0, l)
LinkedList([0, 1, 2, 3, 4])
# Or prepending arbitrary sequences (Still no copy of l performed):
[-1,0] + l
LinkedList([-1, 0, 1, 2, 3, 4])
# Normal list indexing and slice operations can be performed.
# Again, no copy is made unless needed.
>>> l[1], l[-1], l[2:]
(2, 4, LinkedList([3, 4]))
>>> assert l[2:] is l.next.next
# For cases where the slice stops before the end, or uses a
# non-contiguous range, we do need to create a copy. However
# this should be transparent to the user.
>>> LinkedList(range(100))[-10::2]
LinkedList([90, 92, 94, 96, 98])
이행:
import itertools
class LinkedList(object):
"""Immutable linked list class."""
def __new__(cls, l=[]):
if isinstance(l, LinkedList): return l # Immutable, so no copy needed.
i = iter(l)
try:
head = i.next()
except StopIteration:
return cls.EmptyList # Return empty list singleton.
tail = LinkedList(i)
obj = super(LinkedList, cls).__new__(cls)
obj._head = head
obj._tail = tail
return obj
@classmethod
def cons(cls, head, tail):
ll = cls([head])
if not isinstance(tail, cls):
tail = cls(tail)
ll._tail = tail
return ll
# head and tail are not modifiable
@property
def head(self): return self._head
@property
def tail(self): return self._tail
def __nonzero__(self): return True
def __len__(self):
return sum(1 for _ in self)
def __add__(self, other):
other = LinkedList(other)
if not self: return other # () + l = l
start=l = LinkedList(iter(self)) # Create copy, as we'll mutate
while l:
if not l._tail: # Last element?
l._tail = other
break
l = l._tail
return start
def __radd__(self, other):
return LinkedList(other) + self
def __iter__(self):
x=self
while x:
yield x.head
x=x.tail
def __getitem__(self, idx):
"""Get item at specified index"""
if isinstance(idx, slice):
# Special case: Avoid constructing a new list, or performing O(n) length
# calculation for slices like l[3:]. Since we're immutable, just return
# the appropriate node. This becomes O(start) rather than O(n).
# We can't do this for more complicated slices however (eg [l:4]
start = idx.start or 0
if (start >= 0) and (idx.stop is None) and (idx.step is None or idx.step == 1):
no_copy_needed=True
else:
length = len(self) # Need to calc length.
start, stop, step = idx.indices(length)
no_copy_needed = (stop == length) and (step == 1)
if no_copy_needed:
l = self
for i in range(start):
if not l: break # End of list.
l=l.tail
return l
else:
# We need to construct a new list.
if step < 1: # Need to instantiate list to deal with -ve step
return LinkedList(list(self)[start:stop:step])
else:
return LinkedList(itertools.islice(iter(self), start, stop, step))
else:
# Non-slice index.
if idx < 0: idx = len(self)+idx
if not self: raise IndexError("list index out of range")
if idx == 0: return self.head
return self.tail[idx-1]
def __mul__(self, n):
if n <= 0: return Nil
l=self
for i in range(n-1): l += self
return l
def __rmul__(self, n): return self * n
# Ideally we should compute the has ourselves rather than construct
# a temporary tuple as below. I haven't impemented this here
def __hash__(self): return hash(tuple(self))
def __eq__(self, other): return self._cmp(other) == 0
def __ne__(self, other): return not self == other
def __lt__(self, other): return self._cmp(other) < 0
def __gt__(self, other): return self._cmp(other) > 0
def __le__(self, other): return self._cmp(other) <= 0
def __ge__(self, other): return self._cmp(other) >= 0
def _cmp(self, other):
"""Acts as cmp(): -1 for self<other, 0 for equal, 1 for greater"""
if not isinstance(other, LinkedList):
return cmp(LinkedList,type(other)) # Arbitrary ordering.
A, B = iter(self), iter(other)
for a,b in itertools.izip(A,B):
if a<b: return -1
elif a > b: return 1
try:
A.next()
return 1 # a has more items.
except StopIteration: pass
try:
B.next()
return -1 # b has more items.
except StopIteration: pass
return 0 # Lists are equal
def __repr__(self):
return "LinkedList([%s])" % ', '.join(map(repr,self))
class EmptyList(LinkedList):
"""A singleton representing an empty list."""
def __new__(cls):
return object.__new__(cls)
def __iter__(self): return iter([])
def __nonzero__(self): return False
@property
def head(self): raise IndexError("End of list")
@property
def tail(self): raise IndexError("End of list")
# Create EmptyList singleton
LinkedList.EmptyList = EmptyList()
del EmptyList
llist 모듈은 연결된 목록 데이터 구조를 구현합니다. 이중 연결 목록, 즉 dllist
단일 연결 데이터 구조를 지원 sllist
합니다.
이 개체는 이중 연결 목록 데이터 구조를 나타냅니다.
first
dllistnode
목록의 첫 번째 개체 None
목록이 비어있는 경우
last
dllistnode
목록의 마지막 개체 목록이 비어있는 경우 없음
dllist 객체는 다음 방법도 지원합니다.
append(x)
x
목록의 오른쪽에 추가 하고 삽입 된 상태로 반환 dllistnode
합니다.
appendleft(x)
x
목록의 왼쪽에 추가 하고 insert를 반환 dllistnode
합니다.
appendright(x)
x
목록의 오른쪽에 추가 하고 삽입 된 상태로 반환 dllistnode
합니다.
clear()
목록에서 모든 노드를 제거하십시오.
extend(iterable)
iterable
목록의 오른쪽 에서 요소를 추가 하십시오.
extendleft(iterable)
iterable
목록의 왼쪽 에서 요소를 추가 하십시오.
extendright(iterable)
iterable
목록의 오른쪽 에서 요소를 추가 하십시오.
insert(x[, before])
지정되지 않은 x
경우 목록의 오른쪽에 추가 before
하거나 x
의 왼쪽에 삽입 하십시오 dllistnode before
. 삽입 삽입 dllistnode
.
nodeat(index)
반환 노드 (유형의 dllistnode
)에서 index
.
pop()
목록의 오른쪽에서 요소 값을 제거하고 반환하십시오.
popleft()
목록의 왼쪽에서 요소 값을 제거하고 반환하십시오.
popright()
목록의 오른쪽에서 요소의 값을 제거하고 반환
remove(node)
없애다 node
목록에서 하고 저장된 요소를 리턴하십시오.
dllistnode
사물llist.dllistnode([value])
다음과 같이 초기화 된 새 이중 연결 목록 노드를 반환합니다 (선택 사항). value
.
dllistnode
객체는 다음과 같은 속성을 제공합니다.next
목록의 다음 노드 이 속성은 읽기 전용입니다.
prev
목록의 이전 노드 이 속성은 읽기 전용입니다.
value
이 노드에 저장된 값. 이 참조에서 컴파일
클래스 llist.sllist([iterable])
반환의 요소로 초기화 된 새로운 단일 연결리스트 iterable
. iterable을 지정하지 않으면 새 항목 sllist
이 비어 있습니다.
이 sllist
개체에 대해 유사한 속성 및 작업 집합이 정의되어 있습니다. 자세한 내용은이 참조를 참조하십시오.
class Node(object):
def __init__(self, data=None, next=None):
self.data = data
self.next = next
def setData(self, data):
self.data = data
return self.data
def setNext(self, next):
self.next = next
def getNext(self):
return self.next
def hasNext(self):
return self.next != None
class singleLinkList(object):
def __init__(self):
self.head = None
def isEmpty(self):
return self.head == None
def insertAtBeginning(self, data):
newNode = Node()
newNode.setData(data)
if self.listLength() == 0:
self.head = newNode
else:
newNode.setNext(self.head)
self.head = newNode
def insertAtEnd(self, data):
newNode = Node()
newNode.setData(data)
current = self.head
while current.getNext() != None:
current = current.getNext()
current.setNext(newNode)
def listLength(self):
current = self.head
count = 0
while current != None:
count += 1
current = current.getNext()
return count
def print_llist(self):
current = self.head
print("List Start.")
while current != None:
print(current.getData())
current = current.getNext()
print("List End.")
if __name__ == '__main__':
ll = singleLinkList()
ll.insertAtBeginning(55)
ll.insertAtEnd(56)
ll.print_llist()
print(ll.listLength())
이 추가 기능을 Nick Stinemates를 기반으로했습니다.
def add_node_at_end(self, data):
new_node = Node()
node = self.curr_node
while node:
if node.next == None:
node.next = new_node
new_node.next = None
new_node.data = data
node = node.next
그가 처음에 새로운 노드를 추가하는 방법은 일반적으로 끝에 새로운 노드를 추가하는 많은 구현을 보았지만 무엇이든 재미 있습니다.
다음은 내가 생각해 낸 것입니다. 그것은에 similer의 리카르도 C.의 그것을 위해 대신 역으로 숫자를 인쇄를 제외하고,이 스레드. 또한 일반적인 Python 목록처럼 목록을 인쇄하기 위해 LinkedList 객체를 Python Iterator로 만들었습니다.
class Node:
def __init__(self, data=None):
self.data = data
self.next = None
def __str__(self):
return str(self.data)
class LinkedList:
def __init__(self):
self.head = None
self.curr = None
self.tail = None
def __iter__(self):
return self
def next(self):
if self.head and not self.curr:
self.curr = self.head
return self.curr
elif self.curr.next:
self.curr = self.curr.next
return self.curr
else:
raise StopIteration
def append(self, data):
n = Node(data)
if not self.head:
self.head = n
self.tail = n
else:
self.tail.next = n
self.tail = self.tail.next
# Add 5 nodes
ll = LinkedList()
for i in range(1, 6):
ll.append(i)
# print out the list
for n in ll:
print n
"""
Example output:
$ python linked_list.py
1
2
3
4
5
"""
불변의 연결리스트를 사용할 때 파이썬의 튜플을 직접 사용하는 것을 고려하십시오.
ls = (1, 2, 3, 4, 5)
def first(ls): return ls[0]
def rest(ls): return ls[1:]
정말 쉽습니다. len (ls), x in ls 등과 같은 추가 기능을 유지할 수 있습니다.
class LL(object):
def __init__(self,val):
self.val = val
self.next = None
def pushNodeEnd(self,top,val):
if top is None:
top.val=val
top.next=None
else:
tmp=top
while (tmp.next != None):
tmp=tmp.next
newNode=LL(val)
newNode.next=None
tmp.next=newNode
def pushNodeFront(self,top,val):
if top is None:
top.val=val
top.next=None
else:
newNode=LL(val)
newNode.next=top
top=newNode
def popNodeFront(self,top):
if top is None:
return
else:
sav=top
top=top.next
return sav
def popNodeEnd(self,top):
if top is None:
return
else:
tmp=top
while (tmp.next != None):
prev=tmp
tmp=tmp.next
prev.next=None
return tmp
top=LL(10)
top.pushNodeEnd(top, 20)
top.pushNodeEnd(top, 30)
pop=top.popNodeEnd(top)
print (pop.val)
Python 2.x 및 3.x 단일 링크 목록 클래스를 https://pypi.python.org/pypi/linked_list_mod/에
CPython 2.7, CPython 3.4, Pypy 2.3.1, Pypy3 2.3.1 및 Jython 2.7b2로 테스트되었으며 멋진 자동 테스트 스위트가 제공됩니다.
LIFO 및 FIFO 클래스도 포함됩니다.
그들은 불변하지 않습니다.
class LinkedStack:
'''LIFO Stack implementation using a singly linked list for storage.'''
_ToList = []
#---------- nested _Node class -----------------------------
class _Node:
'''Lightweight, nonpublic class for storing a singly linked node.'''
__slots__ = '_element', '_next' #streamline memory usage
def __init__(self, element, next):
self._element = element
self._next = next
#--------------- stack methods ---------------------------------
def __init__(self):
'''Create an empty stack.'''
self._head = None
self._size = 0
def __len__(self):
'''Return the number of elements in the stack.'''
return self._size
def IsEmpty(self):
'''Return True if the stack is empty'''
return self._size == 0
def Push(self,e):
'''Add element e to the top of the Stack.'''
self._head = self._Node(e, self._head) #create and link a new node
self._size +=1
self._ToList.append(e)
def Top(self):
'''Return (but do not remove) the element at the top of the stack.
Raise exception if the stack is empty
'''
if self.IsEmpty():
raise Exception('Stack is empty')
return self._head._element #top of stack is at head of list
def Pop(self):
'''Remove and return the element from the top of the stack (i.e. LIFO).
Raise exception if the stack is empty
'''
if self.IsEmpty():
raise Exception('Stack is empty')
answer = self._head._element
self._head = self._head._next #bypass the former top node
self._size -=1
self._ToList.remove(answer)
return answer
def Count(self):
'''Return how many nodes the stack has'''
return self.__len__()
def Clear(self):
'''Delete all nodes'''
for i in range(self.Count()):
self.Pop()
def ToList(self):
return self._ToList
연결리스트 클래스
class LinkedStack:
# Nested Node Class
class Node:
def __init__(self, element, next):
self.__element = element
self.__next = next
def get_next(self):
return self.__next
def get_element(self):
return self.__element
def __init__(self):
self.head = None
self.size = 0
self.data = []
def __len__(self):
return self.size
def __str__(self):
return str(self.data)
def is_empty(self):
return self.size == 0
def push(self, e):
newest = self.Node(e, self.head)
self.head = newest
self.size += 1
self.data.append(newest)
def top(self):
if self.is_empty():
raise Empty('Stack is empty')
return self.head.__element
def pop(self):
if self.is_empty():
raise Empty('Stack is empty')
answer = self.head.element
self.head = self.head.next
self.size -= 1
return answer
용법
from LinkedStack import LinkedStack
x = LinkedStack()
x.push(10)
x.push(25)
x.push(55)
for i in range(x.size - 1, -1, -1):
print '|', x.data[i].get_element(), '|' ,
#next object
if x.data[i].get_next() == None:
print '--> None'
else:
print x.data[i].get_next().get_element(), '-|----> ',
산출
| 55 | 25 -|----> | 25 | 10 -|----> | 10 | --> None
다음은 간단한 구현입니다.
class Node:
def __init__(self):
self.data = None
self.next = None
def __str__(self):
return "Data %s: Next -> %s"%(self.data, self.next)
class LinkedList:
def __init__(self):
self.head = Node()
self.curNode = self.head
def insertNode(self, data):
node = Node()
node.data = data
node.next = None
if self.head.data == None:
self.head = node
self.curNode = node
else:
self.curNode.next = node
self.curNode = node
def printList(self):
print self.head
l = LinkedList()
l.insertNode(1)
l.insertNode(2)
l.insertNode(34)
산출:
Data 1: Next -> Data 2: Next -> Data 34: Next -> Data 4: Next -> None
내 해결책은 다음과 같습니다.
이행
class Node:
def __init__(self, initdata):
self.data = initdata
self.next = None
def get_data(self):
return self.data
def set_data(self, data):
self.data = data
def get_next(self):
return self.next
def set_next(self, node):
self.next = node
# ------------------------ Link List class ------------------------------- #
class LinkList:
def __init__(self):
self.head = None
def is_empty(self):
return self.head == None
def traversal(self, data=None):
node = self.head
index = 0
found = False
while node is not None and not found:
if node.get_data() == data:
found = True
else:
node = node.get_next()
index += 1
return (node, index)
def size(self):
_, count = self.traversal(None)
return count
def search(self, data):
node, _ = self.traversal(data)
return node
def add(self, data):
node = Node(data)
node.set_next(self.head)
self.head = node
def remove(self, data):
previous_node = None
current_node = self.head
found = False
while current_node is not None and not found:
if current_node.get_data() == data:
found = True
if previous_node:
previous_node.set_next(current_node.get_next())
else:
self.head = current_node
else:
previous_node = current_node
current_node = current_node.get_next()
return found
용법
link_list = LinkList()
link_list.add(10)
link_list.add(20)
link_list.add(30)
link_list.add(40)
link_list.add(50)
link_list.size()
link_list.search(30)
link_list.remove(20)
원래 구현 아이디어
아래의 구현으로 청구서가 상당히 우아하게 작성됩니다.
'''singly linked lists, by Yingjie Lan, December 1st, 2011'''
class linkst:
'''Singly linked list, with pythonic features.
The list has pointers to both the first and the last node.'''
__slots__ = ['data', 'next'] #memory efficient
def __init__(self, iterable=(), data=None, next=None):
'''Provide an iterable to make a singly linked list.
Set iterable to None to make a data node for internal use.'''
if iterable is not None:
self.data, self.next = self, None
self.extend(iterable)
else: #a common node
self.data, self.next = data, next
def empty(self):
'''test if the list is empty'''
return self.next is None
def append(self, data):
'''append to the end of list.'''
last = self.data
self.data = last.next = linkst(None, data)
#self.data = last.next
def insert(self, data, index=0):
'''insert data before index.
Raise IndexError if index is out of range'''
curr, cat = self, 0
while cat < index and curr:
curr, cat = curr.next, cat+1
if index<0 or not curr:
raise IndexError(index)
new = linkst(None, data, curr.next)
if curr.next is None: self.data = new
curr.next = new
def reverse(self):
'''reverse the order of list in place'''
current, prev = self.next, None
while current: #what if list is empty?
next = current.next
current.next = prev
prev, current = current, next
if self.next: self.data = self.next
self.next = prev
def delete(self, index=0):
'''remvoe the item at index from the list'''
curr, cat = self, 0
while cat < index and curr.next:
curr, cat = curr.next, cat+1
if index<0 or not curr.next:
raise IndexError(index)
curr.next = curr.next.next
if curr.next is None: #tail
self.data = curr #current == self?
def remove(self, data):
'''remove first occurrence of data.
Raises ValueError if the data is not present.'''
current = self
while current.next: #node to be examined
if data == current.next.data: break
current = current.next #move on
else: raise ValueError(data)
current.next = current.next.next
if current.next is None: #tail
self.data = current #current == self?
def __contains__(self, data):
'''membership test using keyword 'in'.'''
current = self.next
while current:
if data == current.data:
return True
current = current.next
return False
def __iter__(self):
'''iterate through list by for-statements.
return an iterator that must define the __next__ method.'''
itr = linkst()
itr.next = self.next
return itr #invariance: itr.data == itr
def __next__(self):
'''the for-statement depends on this method
to provide items one by one in the list.
return the next data, and move on.'''
#the invariance is checked so that a linked list
#will not be mistakenly iterated over
if self.data is not self or self.next is None:
raise StopIteration()
next = self.next
self.next = next.next
return next.data
def __repr__(self):
'''string representation of the list'''
return 'linkst(%r)'%list(self)
def __str__(self):
'''converting the list to a string'''
return '->'.join(str(i) for i in self)
#note: this is NOT the class lab! see file linked.py.
def extend(self, iterable):
'''takes an iterable, and append all items in the iterable
to the end of the list self.'''
last = self.data
for i in iterable:
last.next = linkst(None, i)
last = last.next
self.data = last
def index(self, data):
'''TODO: return first index of data in the list self.
Raises ValueError if the value is not present.'''
#must not convert self to a tuple or any other containers
current, idx = self.next, 0
while current:
if current.data == data: return idx
current, idx = current.next, idx+1
raise ValueError(data)
class LinkedList:
def __init__(self, value):
self.value = value
self.next = None
def insert(self, node):
if not self.next:
self.next = node
else:
self.next.insert(node)
def __str__(self):
if self.next:
return '%s -> %s' % (self.value, str(self.next))
else:
return ' %s ' % self.value
if __name__ == "__main__":
items = ['a', 'b', 'c', 'd', 'e']
ll = None
for item in items:
if ll:
next_ll = LinkedList(item)
ll.insert(next_ll)
else:
ll = LinkedList(item)
print('[ %s ]' % ll)
우선, 나는 당신이 링크 된 목록을 원한다고 가정합니다. 실제로 collections.deque
현재 CPython 구현이 이중으로 연결된 블록 목록 인 각 블록은 62 개의화물 객체 배열을 포함하는을 사용할 수 있습니다. 연결된 목록의 기능을 포함합니다. llist
pypi에서 호출 된 C 확장자를 검색 할 수도 있습니다 . 순수 파이썬으로 연결 목록 ADT를 따라하기 쉬운 구현을 원한다면 다음과 같은 최소 구현을 살펴볼 수 있습니다.
class Node (object):
""" Node for a linked list. """
def __init__ (self, value, next=None):
self.value = value
self.next = next
class LinkedList (object):
""" Linked list ADT implementation using class.
A linked list is a wrapper of a head pointer
that references either None, or a node that contains
a reference to a linked list.
"""
def __init__ (self, iterable=()):
self.head = None
for x in iterable:
self.head = Node(x, self.head)
def __iter__ (self):
p = self.head
while p is not None:
yield p.value
p = p.next
def prepend (self, x): # 'appendleft'
self.head = Node(x, self.head)
def reverse (self):
""" In-place reversal. """
p = self.head
self.head = None
while p is not None:
p0, p = p, p.next
p0.next = self.head
self.head = p0
if __name__ == '__main__':
ll = LinkedList([6,5,4])
ll.prepend(3); ll.prepend(2)
print list(ll)
ll.reverse()
print list(ll)
이중 연결 목록 샘플 (linkedlist.py로 저장) :
class node:
def __init__(self, before=None, cargo=None, next=None):
self._previous = before
self._cargo = cargo
self._next = next
def __str__(self):
return str(self._cargo) or None
class linkedList:
def __init__(self):
self._head = None
self._length = 0
def add(self, cargo):
n = node(None, cargo, self._head)
if self._head:
self._head._previous = n
self._head = n
self._length += 1
def search(self,cargo):
node = self._head
while (node and node._cargo != cargo):
node = node._next
return node
def delete(self,cargo):
node = self.search(cargo)
if node:
prev = node._previous
nx = node._next
if prev:
prev._next = node._next
else:
self._head = nx
nx._previous = None
if nx:
nx._previous = prev
else:
prev._next = None
self._length -= 1
def __str__(self):
print 'Size of linked list: ',self._length
node = self._head
while node:
print node
node = node._next
테스트 (test.py로 저장) :
from linkedlist import node, linkedList
def test():
print 'Testing Linked List'
l = linkedList()
l.add(10)
l.add(20)
l.add(30)
l.add(40)
l.add(50)
l.add(60)
print 'Linked List after insert nodes:'
l.__str__()
print 'Search some value, 30:'
node = l.search(30)
print node
print 'Delete some value, 30:'
node = l.delete(30)
l.__str__()
print 'Delete first element, 60:'
node = l.delete(60)
l.__str__()
print 'Delete last element, 10:'
node = l.delete(10)
l.__str__()
if __name__ == "__main__":
test()
출력 :
Testing Linked List
Linked List after insert nodes:
Size of linked list: 6
60
50
40
30
20
10
Search some value, 30:
30
Delete some value, 30:
Size of linked list: 5
60
50
40
20
10
Delete first element, 60:
Size of linked list: 4
50
40
20
10
Delete last element, 10:
Size of linked list: 3
50
40
20
또한 기본 두 개의 Node 및 Linked List 클래스가있는 튜토리얼과 삽입, 삭제, 역 분류, 정렬 등을위한 추가 메소드를 기반으로 단일 링크 목록을 작성했습니다.
가장 좋지 않거나 가장 쉬운 것은 아니지만 정상적으로 작동합니다.
"""
🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏
Single Linked List (SLL):
A simple object-oriented implementation of Single Linked List (SLL)
with some associated methods, such as create list, count nodes, delete nodes, and such.
🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏
"""
class Node:
"""
Instantiates a node
"""
def __init__(self, value):
"""
Node class constructor which sets the value and link of the node
"""
self.info = value
self.link = None
class SingleLinkedList:
"""
Instantiates the SLL class
"""
def __init__(self):
"""
SLL class constructor which sets the value and link of the node
"""
self.start = None
def create_single_linked_list(self):
"""
Reads values from stdin and appends them to this list and creates a SLL with integer nodes
"""
try:
number_of_nodes = int(input("👉 Enter a positive integer between 1-50 for the number of nodes you wish to have in the list: "))
if number_of_nodes <= 0 or number_of_nodes > 51:
print("💛 The number of nodes though must be an integer between 1 to 50!")
self.create_single_linked_list()
except Exception as e:
print("💛 Error: ", e)
self.create_single_linked_list()
try:
for _ in range(number_of_nodes):
try:
data = int(input("👉 Enter an integer for the node to be inserted: "))
self.insert_node_at_end(data)
except Exception as e:
print("💛 Error: ", e)
except Exception as e:
print("💛 Error: ", e)
def count_sll_nodes(self):
"""
Counts the nodes of the linked list
"""
try:
p = self.start
n = 0
while p is not None:
n += 1
p = p.link
if n >= 1:
print(f"💚 The number of nodes in the linked list is {n}")
else:
print(f"💛 The SLL does not have a node!")
except Exception as e:
print("💛 Error: ", e)
def search_sll_nodes(self, x):
"""
Searches the x integer in the linked list
"""
try:
position = 1
p = self.start
while p is not None:
if p.info == x:
print(f"💚 YAAAY! We found {x} at position {position}")
return True
#Increment the position
position += 1
#Assign the next node to the current node
p = p.link
else:
print(f"💔 Sorry! We couldn't find {x} at any position. Maybe, you might want to use option 9 and try again later!")
return False
except Exception as e:
print("💛 Error: ", e)
def display_sll(self):
"""
Displays the list
"""
try:
if self.start is None:
print("💛 Single linked list is empty!")
return
display_sll = "💚 Single linked list nodes are: "
p = self.start
while p is not None:
display_sll += str(p.info) + "\t"
p = p.link
print(display_sll)
except Exception as e:
print("💛 Error: ", e)
def insert_node_in_beginning(self, data):
"""
Inserts an integer in the beginning of the linked list
"""
try:
temp = Node(data)
temp.link = self.start
self.start = temp
except Exception as e:
print("💛 Error: ", e)
def insert_node_at_end(self, data):
"""
Inserts an integer at the end of the linked list
"""
try:
temp = Node(data)
if self.start is None:
self.start = temp
return
p = self.start
while p.link is not None:
p = p.link
p.link = temp
except Exception as e:
print("💛 Error: ", e)
def insert_node_after_another(self, data, x):
"""
Inserts an integer after the x node
"""
try:
p = self.start
while p is not None:
if p.info == x:
break
p = p.link
if p is None:
print(f"💔 Sorry! {x} is not in the list.")
else:
temp = Node(data)
temp.link = p.link
p.link = temp
except Exception as e:
print("💛 Error: ", e)
def insert_node_before_another(self, data, x):
"""
Inserts an integer before the x node
"""
try:
# If list is empty
if self.start is None:
print("💔 Sorry! The list is empty.")
return
# If x is the first node, and new node should be inserted before the first node
if x == self.start.info:
temp = Node(data)
temp.link = p.link
p.link = temp
# Finding the reference to the prior node containing x
p = self.start
while p.link is not None:
if p.link.info == x:
break
p = p.link
if p.link is not None:
print(f"💔 Sorry! {x} is not in the list.")
else:
temp = Node(data)
temp.link = p.link
p.link = temp
except Exception as e:
print("💛 Error: ", e)
def insert_node_at_position(self, data, k):
"""
Inserts an integer in k position of the linked list
"""
try:
# if we wish to insert at the first node
if k == 1:
temp = Node(data)
temp.link = self.start
self.start = temp
return
p = self.start
i = 1
while i < k-1 and p is not None:
p = p.link
i += 1
if p is None:
print(f"💛 The max position is {i}")
else:
temp = Node(data)
temp.link = self.start
self.start = temp
except Exception as e:
print("💛 Error: ", e)
def delete_a_node(self, x):
"""
Deletes a node of a linked list
"""
try:
# If list is empty
if self.start is None:
print("💔 Sorry! The list is empty.")
return
# If there is only one node
if self.start.info == x:
self.start = self.start.link
# If more than one node exists
p = self.start
while p.link is not None:
if p.link.info == x:
break
p = p.link
if p.link is None:
print(f"💔 Sorry! {x} is not in the list.")
else:
p.link = p.link.link
except Exception as e:
print("💛 Error: ", e)
def delete_sll_first_node(self):
"""
Deletes the first node of a linked list
"""
try:
if self.start is None:
return
self.start = self.start.link
except Exception as e:
print("💛 Error: ", e)
def delete_sll_last_node(self):
"""
Deletes the last node of a linked list
"""
try:
# If the list is empty
if self.start is None:
return
# If there is only one node
if self.start.link is None:
self.start = None
return
# If there is more than one node
p = self.start
# Increment until we find the node prior to the last node
while p.link.link is not None:
p = p.link
p.link = None
except Exception as e:
print("💛 Error: ", e)
def reverse_sll(self):
"""
Reverses the linked list
"""
try:
prev = None
p = self.start
while p is not None:
next = p.link
p.link = prev
prev = p
p = next
self.start = prev
except Exception as e:
print("💛 Error: ", e)
def bubble_sort_sll_nodes_data(self):
"""
Bubble sorts the linked list on integer values
"""
try:
# If the list is empty or there is only one node
if self.start is None or self.start.link is None:
print("💛 The list has no or only one node and sorting is not required.")
end = None
while end != self.start.link:
p = self.start
while p.link != end:
q = p.link
if p.info > q.info:
p.info, q.info = q.info, p.info
p = p.link
end = p
except Exception as e:
print("💛 Error: ", e)
def bubble_sort_sll(self):
"""
Bubble sorts the linked list
"""
try:
# If the list is empty or there is only one node
if self.start is None or self.start.link is None:
print("💛 The list has no or only one node and sorting is not required.")
end = None
while end != self.start.link:
r = p = self.start
while p.link != end:
q = p.link
if p.info > q.info:
p.link = q.link
q.link = p
if p != self.start:
r.link = q.link
else:
self.start = q
p, q = q, p
r = p
p = p.link
end = p
except Exception as e:
print("💛 Error: ", e)
def sll_has_cycle(self):
"""
Tests the list for cycles using Tortoise and Hare Algorithm (Floyd's cycle detection algorithm)
"""
try:
if self.find_sll_cycle() is None:
return False
else:
return True
except Exception as e:
print("💛 Error: ", e)
def find_sll_cycle(self):
"""
Finds cycles in the list, if any
"""
try:
# If there is one node or none, there is no cycle
if self.start is None or self.start.link is None:
return None
# Otherwise,
slowR = self.start
fastR = self.start
while slowR is not None and fastR is not None:
slowR = slowR.link
fastR = fastR.link.link
if slowR == fastR:
return slowR
return None
except Exception as e:
print("💛 Error: ", e)
def remove_cycle_from_sll(self):
"""
Removes the cycles
"""
try:
c = self.find_sll_cycle()
# If there is no cycle
if c is None:
return
print(f"💛 There is a cycle at node: ", c.info)
p = c
q = c
len_cycles = 0
while True:
len_cycles += 1
q = q.link
if p == q:
break
print(f"💛 The cycle length is {len_cycles}")
len_rem_list = 0
p = self.start
while p != q:
len_rem_list += 1
p = p.link
q = q.link
print(f"💛 The number of nodes not included in the cycle is {len_rem_list}")
length_list = len_rem_list + len_cycles
print(f"💛 The SLL length is {length_list}")
# This for loop goes to the end of the SLL, and set the last node to None and the cycle is removed.
p = self.start
for _ in range(length_list-1):
p = p.link
p.link = None
except Exception as e:
print("💛 Error: ", e)
def insert_cycle_in_sll(self, x):
"""
Inserts a cycle at a node that contains x
"""
try:
if self.start is None:
return False
p = self.start
px = None
prev = None
while p is not None:
if p.info == x:
px = p
prev = p
p = p.link
if px is not None:
prev.link = px
else:
print(f"💔 Sorry! {x} is not in the list.")
except Exception as e:
print("💛 Error: ", e)
def merge_using_new_list(self, list2):
"""
Merges two already sorted SLLs by creating new lists
"""
merge_list = SingleLinkedList()
merge_list.start = self._merge_using_new_list(self.start, list2.start)
return merge_list
def _merge_using_new_list(self, p1, p2):
"""
Private method of merge_using_new_list
"""
if p1.info <= p2.info:
Start_merge = Node(p1.info)
p1 = p1.link
else:
Start_merge = Node(p2.info)
p2 = p2.link
pM = Start_merge
while p1 is not None and p2 is not None:
if p1.info <= p2.info:
pM.link = Node(p1.info)
p1 = p1.link
else:
pM.link = Node(p2.info)
p2 = p2.link
pM = pM.link
#If the second list is finished, yet the first list has some nodes
while p1 is not None:
pM.link = Node(p1.info)
p1 = p1.link
pM = pM.link
#If the second list is finished, yet the first list has some nodes
while p2 is not None:
pM.link = Node(p2.info)
p2 = p2.link
pM = pM.link
return Start_merge
def merge_inplace(self, list2):
"""
Merges two already sorted SLLs in place in O(1) of space
"""
merge_list = SingleLinkedList()
merge_list.start = self._merge_inplace(self.start, list2.start)
return merge_list
def _merge_inplace(self, p1, p2):
"""
Merges two already sorted SLLs in place in O(1) of space
"""
if p1.info <= p2.info:
Start_merge = p1
p1 = p1.link
else:
Start_merge = p2
p2 = p2.link
pM = Start_merge
while p1 is not None and p2 is not None:
if p1.info <= p2.info:
pM.link = p1
pM = pM.link
p1 = p1.link
else:
pM.link = p2
pM = pM.link
p2 = p2.link
if p1 is None:
pM.link = p2
else:
pM.link = p1
return Start_merge
def merge_sort_sll(self):
"""
Sorts the linked list using merge sort algorithm
"""
self.start = self._merge_sort_recursive(self.start)
def _merge_sort_recursive(self, list_start):
"""
Recursively calls the merge sort algorithm for two divided lists
"""
# If the list is empty or has only one node
if list_start is None or list_start.link is None:
return list_start
# If the list has two nodes or more
start_one = list_start
start_two = self._divide_list(self_start)
start_one = self._merge_sort_recursive(start_one)
start_two = self._merge_sort_recursive(start_two)
start_merge = self._merge_inplace(start_one, start_two)
return start_merge
def _divide_list(self, p):
"""
Divides the linked list into two almost equally sized lists
"""
# Refers to the third nodes of the list
q = p.link.link
while q is not None and p is not None:
# Increments p one node at the time
p = p.link
# Increments q two nodes at the time
q = q.link.link
start_two = p.link
p.link = None
return start_two
def concat_second_list_to_sll(self, list2):
"""
Concatenates another SLL to an existing SLL
"""
# If the second SLL has no node
if list2.start is None:
return
# If the original SLL has no node
if self.start is None:
self.start = list2.start
return
# Otherwise traverse the original SLL
p = self.start
while p.link is not None:
p = p.link
# Link the last node to the first node of the second SLL
p.link = list2.start
def test_merge_using_new_list_and_inplace(self):
"""
"""
LIST_ONE = SingleLinkedList()
LIST_TWO = SingleLinkedList()
LIST_ONE.create_single_linked_list()
LIST_TWO.create_single_linked_list()
print("1️⃣ The unsorted first list is: ")
LIST_ONE.display_sll()
print("2️⃣ The unsorted second list is: ")
LIST_TWO.display_sll()
LIST_ONE.bubble_sort_sll_nodes_data()
LIST_TWO.bubble_sort_sll_nodes_data()
print("1️⃣ The sorted first list is: ")
LIST_ONE.display_sll()
print("2️⃣ The sorted second list is: ")
LIST_TWO.display_sll()
LIST_THREE = LIST_ONE.merge_using_new_list(LIST_TWO)
print("The merged list by creating a new list is: ")
LIST_THREE.display_sll()
LIST_FOUR = LIST_ONE.merge_inplace(LIST_TWO)
print("The in-place merged list is: ")
LIST_FOUR.display_sll()
def test_all_methods(self):
"""
Tests all methods of the SLL class
"""
OPTIONS_HELP = """
📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗
Select a method from 1-19:
🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒
ℹ️ (1) 👉 Create a single liked list (SLL).
ℹ️ (2) 👉 Display the SLL.
ℹ️ (3) 👉 Count the nodes of SLL.
ℹ️ (4) 👉 Search the SLL.
ℹ️ (5) 👉 Insert a node at the beginning of the SLL.
ℹ️ (6) 👉 Insert a node at the end of the SLL.
ℹ️ (7) 👉 Insert a node after a specified node of the SLL.
ℹ️ (8) 👉 Insert a node before a specified node of the SLL.
ℹ️ (9) 👉 Delete the first node of SLL.
ℹ️ (10) 👉 Delete the last node of the SLL.
ℹ️ (11) 👉 Delete a node you wish to remove.
ℹ️ (12) 👉 Reverse the SLL.
ℹ️ (13) 👉 Bubble sort the SLL by only exchanging the integer values.
ℹ️ (14) 👉 Bubble sort the SLL by exchanging links.
ℹ️ (15) 👉 Merge sort the SLL.
ℹ️ (16) 👉 Insert a cycle in the SLL.
ℹ️ (17) 👉 Detect if the SLL has a cycle.
ℹ️ (18) 👉 Remove cycle in the SLL.
ℹ️ (19) 👉 Test merging two bubble-sorted SLLs.
ℹ️ (20) 👉 Concatenate a second list to the SLL.
ℹ️ (21) 👉 Exit.
📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗
"""
self.create_single_linked_list()
while True:
print(OPTIONS_HELP)
UI_OPTION = int(input("👉 Enter an integer for the method you wish to run using the above help: "))
if UI_OPTION == 1:
data = int(input("👉 Enter an integer to be inserted at the end of the list: "))
x = int(input("👉 Enter an integer to be inserted after that: "))
self.insert_node_after_another(data, x)
elif UI_OPTION == 2:
self.display_sll()
elif UI_OPTION == 3:
self.count_sll_nodes()
elif UI_OPTION == 4:
data = int(input("👉 Enter an integer to be searched: "))
self.search_sll_nodes(data)
elif UI_OPTION == 5:
data = int(input("👉 Enter an integer to be inserted at the beginning: "))
self.insert_node_in_beginning(data)
elif UI_OPTION == 6:
data = int(input("👉 Enter an integer to be inserted at the end: "))
self.insert_node_at_end(data)
elif UI_OPTION == 7:
data = int(input("👉 Enter an integer to be inserted: "))
x = int(input("👉 Enter an integer to be inserted before that: "))
self.insert_node_before_another(data, x)
elif UI_OPTION == 8:
data = int(input("👉 Enter an integer for the node to be inserted: "))
k = int(input("👉 Enter an integer for the position at which you wish to insert the node: "))
self.insert_node_before_another(data, k)
elif UI_OPTION == 9:
self.delete_sll_first_node()
elif UI_OPTION == 10:
self.delete_sll_last_node()
elif UI_OPTION == 11:
data = int(input("👉 Enter an integer for the node you wish to remove: "))
self.delete_a_node(data)
elif UI_OPTION == 12:
self.reverse_sll()
elif UI_OPTION == 13:
self.bubble_sort_sll_nodes_data()
elif UI_OPTION == 14:
self.bubble_sort_sll()
elif UI_OPTION == 15:
self.merge_sort_sll()
elif UI_OPTION == 16:
data = int(input("👉 Enter an integer at which a cycle has to be formed: "))
self.insert_cycle_in_sll(data)
elif UI_OPTION == 17:
if self.sll_has_cycle():
print("💛 The linked list has a cycle. ")
else:
print("💚 YAAAY! The linked list does not have a cycle. ")
elif UI_OPTION == 18:
self.remove_cycle_from_sll()
elif UI_OPTION == 19:
self.test_merge_using_new_list_and_inplace()
elif UI_OPTION == 20:
list2 = self.create_single_linked_list()
self.concat_second_list_to_sll(list2)
elif UI_OPTION == 21:
break
else:
print("💛 Option must be an integer, between 1 to 21.")
print()
if __name__ == '__main__':
# Instantiates a new SLL object
SLL_OBJECT = SingleLinkedList()
SLL_OBJECT.test_all_methods()
Nick Stinemates의 답변 확장
class Node(object):
def __init__(self):
self.data = None
self.next = None
class LinkedList:
def __init__(self):
self.head = None
def prepend_node(self, data):
new_node = Node()
new_node.data = data
new_node.next = self.head
self.head = new_node
def append_node(self, data):
new_node = Node()
new_node.data = data
current = self.head
while current.next:
current = current.next
current.next = new_node
def reverse(self):
""" In-place reversal, modifies exiting list"""
previous = None
current_node = self.head
while current_node:
temp = current_node.next
current_node.next = previous
previous = current_node
current_node = temp
self.head = previous
def search(self, data):
current_node = self.head
try:
while current_node.data != data:
current_node = current_node.next
return True
except:
return False
def display(self):
if self.head is None:
print("Linked list is empty")
else:
current_node = self.head
while current_node:
print(current_node.data)
current_node = current_node.next
def list_length(self):
list_length = 0
current_node = self.head
while current_node:
list_length += 1
current_node = current_node.next
return list_length
def main():
linked_list = LinkedList()
linked_list.prepend_node(1)
linked_list.prepend_node(2)
linked_list.prepend_node(3)
linked_list.append_node(24)
linked_list.append_node(25)
linked_list.display()
linked_list.reverse()
linked_list.display()
print(linked_list.search(1))
linked_list.reverse()
linked_list.display()
print("Lenght of singly linked list is: " + str(linked_list.list_length()))
if __name__ == "__main__":
main()
내 2 센트
class Node:
def __init__(self, value=None, next=None):
self.value = value
self.next = next
def __str__(self):
return str(self.value)
class LinkedList:
def __init__(self):
self.first = None
self.last = None
def add(self, x):
current = Node(x, None)
try:
self.last.next = current
except AttributeError:
self.first = current
self.last = current
else:
self.last = current
def print_list(self):
node = self.first
while node:
print node.value
node = node.next
ll = LinkedList()
ll.add("1st")
ll.add("2nd")
ll.add("3rd")
ll.add("4th")
ll.add("5th")
ll.print_list()
# Result:
# 1st
# 2nd
# 3rd
# 4th
# 5th
enter code here
enter code here
class node:
def __init__(self):
self.data = None
self.next = None
class linked_list:
def __init__(self):
self.cur_node = None
self.head = None
def add_node(self,data):
new_node = node()
if self.head == None:
self.head = new_node
self.cur_node = new_node
new_node.data = data
new_node.next = None
self.cur_node.next = new_node
self.cur_node = new_node
def list_print(self):
node = self.head
while node:
print (node.data)
node = node.next
def delete(self):
node = self.head
next_node = node.next
del(node)
self.head = next_node
a = linked_list()
a.add_node(1)
a.add_node(2)
a.add_node(3)
a.add_node(4)
a.delete()
a.list_print()
내 이중 연결 목록은 누비에게 이해할 수 있습니다. C에서 DS에 익숙하다면 이것은 매우 읽기 쉽다.
# LinkedList..
class node:
def __init__(self): ##Cluster of Nodes' properties
self.data=None
self.next=None
self.prev=None
class linkedList():
def __init__(self):
self.t = node() // for future use
self.cur_node = node() // current node
self.start=node()
def add(self,data): // appending the LL
self.new_node = node()
self.new_node.data=data
if self.cur_node.data is None:
self.start=self.new_node //For the 1st node only
self.cur_node.next=self.new_node
self.new_node.prev=self.cur_node
self.cur_node=self.new_node
def backward_display(self): //Displays LL backwards
self.t=self.cur_node
while self.t.data is not None:
print(self.t.data)
self.t=self.t.prev
def forward_display(self): //Displays LL Forward
self.t=self.start
while self.t.data is not None:
print(self.t.data)
self.t=self.t.next
if self.t.next is None:
print(self.t.data)
break
def main(self): //This is kind of the main
function in C
ch=0
while ch is not 4: //Switch-case in C
ch=int(input("Enter your choice:"))
if ch is 1:
data=int(input("Enter data to be added:"))
ll.add(data)
ll.main()
elif ch is 2:
ll.forward_display()
ll.main()
elif ch is 3:
ll.backward_display()
ll.main()
else:
print("Program ends!!")
return
ll=linkedList()
ll.main()
이 코드에 더 많은 단순화가 추가 될 수 있지만, 원시 구현이 더 이해하기 쉽다고 생각했습니다.
간단한 좋아하는 목록을 만들려면이 코드를 참조하십시오
l = [1, [2, [3, [4, [5, [6, [7, [8, [9, [10]]]]]]]]]]]
이 대구의 실행을 시각화하려면 http://www.pythontutor.com/visualize.html#mode=edit를 방문 하십시오.