파이썬 연결리스트


178

파이썬에서 링크 된 목록을 사용하는 가장 쉬운 방법은 무엇입니까? 구성표에서 링크 된 목록은로 간단히 정의됩니다 '(1 2 3 4 5). 파이썬의리스트 [1, 2, 3, 4, 5]와 튜플 (1, 2, 3, 4, 5)은 실제로는 링크 된리스트가 아니며, 링크 된리스트는 상수 시간 연결과 같은 훌륭한 속성을 가지고 있지 않으며 별도의 부분을 참조 할 수 있습니다. 그것들을 불변으로 만들고 작업하기가 정말 쉽습니다!


11
이것은 당신이 그것을 시각화 도움이 될 수 있습니다 .. pythontutor.com/...

답변:


69

다음은 Martin v. Löwis의 표현을 기반으로 한 일부 목록 함수입니다 .

cons   = lambda el, lst: (el, lst)
mklist = lambda *args: reduce(lambda lst, el: cons(el, lst), reversed(args), None)
car = lambda lst: lst[0] if lst else lst
cdr = lambda lst: lst[1] if lst else lst
nth = lambda n, lst: nth(n-1, cdr(lst)) if n > 0 else car(lst)
length  = lambda lst, count=0: length(cdr(lst), count+1) if lst else count
begin   = lambda *args: args[-1]
display = lambda lst: begin(w("%s " % car(lst)), display(cdr(lst))) if lst else w("nil\n")

어디 w = sys.stdout.write

이중 연결 목록은 Raymond Hettinger의 정렬 된 세트 레시피 에서 널리 사용되지만 , 단일 연결 목록은 Python에서 실질적인 가치가 없습니다.

교육을 제외한 모든 문제에 대해 Python에서 단일 링크 목록을 사용한 적이 없습니다 .

Thomas Watnedal 훌륭한 교육 자료를 제안 했습니다 . 컴퓨터 과학자처럼 생각하는 방법, 17 장 : 연결 목록 :

연결된 목록은 다음 중 하나입니다.

  • 없음으로 표시되는 빈 목록 또는
  • 화물 객체 및 링크 된 목록에 대한 참조를 포함하는 노드.

    class Node: 
      def __init__(self, cargo=None, next=None): 
        self.car = cargo 
        self.cdr = next    
      def __str__(self): 
        return str(self.car)
    
    def display(lst):
      if lst:
        w("%s " % lst)
        display(lst.cdr)
      else:
        w("nil\n")

30
당신은 말합니다 : 당신은 교육을 제외한 모든 문제에 대해 파이썬에서 단일 링크 목록을 사용한 적이 없습니다. 그것은 당신을 위해 좋은 :-)하지만 난 당신을 드릴 수 있습니다 : 링크 된 목록에 이상적인 솔루션을 :-) 제공 할 것입니다 현실 세계에서 문제가 있음을 나는 :-) 처음에 링크 된 목록에 대한 StackOverflow의 스캔 이유
레지스 월

8
@RegisMay : 특정 실제 코드 예제에 대한 링크를 제공 하시겠습니까? (참고 : "Python의 단일 링크 목록" "실제" "이어야합니다. 예를 들어 가독성, 성능 또는 선택한"실제 가치 "와 같은 이점을 설명하십시오. 과거에도 비슷한 요청을했습니다 .8 년 만에 Raymond Hettinger의 주문 된 세트 레시피에 사용 된 이중 연결 목록을 제외하고 제로 링크-아마도 파이썬을 처음 접하는 프로그래머만이 질문을 읽었을 수도 있습니다. 가치 있고 높이 평가 될 것입니다.
jfs

3
미안 저는 영어를 모국어로 사용하지 않으며 "단일 연결 목록"과 "단일 연결 목록"을 혼동합니다. 그럼에도 불구하고 파이썬에는 존재하지 않는 (이중) 링크 된 목록이 필요합니다. deque는 모든 요소를 ​​반복하지 않고 각 단일 요소에 직접 액세스해야하므로 도움이되지 않습니다. 내 목표 : 캐시를 구현하고 싶습니다. 그럼에도 불구하고 영어로 된 불완전한 내용으로 인해 내 의견이 제자리를 벗어나게되면 해당 의견을 삭제하십시오. 불편을 끼쳐 드려 죄송합니다.
Regis

5
이중 연결 목록 또는 배열 (파이썬이 목록에 내부적으로 사용)에 비해 단일 연결 목록의 한 가지 실질적인 이점은 두 개의 연결 목록이 꼬리를 공유 할 수 있다는 것입니다. 이는 목록 테일을 공유하면 2 차에서 선형으로 메모리 복잡성을 줄이고 복사로 인한 시간 오버 헤드를 제거 할 수있는 이전 반복에서 저장된 값을 요구하는 동적 알고리즘에 매우 유용합니다.
saolof 2016 년

3
이 rosettacode 링크 실제 링크 목록 대신 시뮬레이션 된 링크 목록을 사용하는 실제 예입니다. 좀 더 명확하고 가독성을 높이기 위해 실제 연결 목록을 사용하도록 다시 작성하십시오. 기존 코드를 개선하는 데 사용되는 연결 목록의 실제 예가 있습니다. 두 번째로, 가장 긴 증가하는 서브 시퀀스 알고리즘이 실제 세계에서 통계에 사용되므로 거기에 있습니다. QED :). 그 외에도 동의하지 않기로합시다. :)
지노

158

일부 필요에 따라 deque 도 유용 할 수 있습니다. O (1) 비용으로 deque의 양쪽 끝에 항목을 추가하고 제거 할 수 있습니다.

from collections import deque
d = deque([1,2,3,4])

print d
for x in d:
    print x
print d.pop(), d

16
동안 deque유용한 데이터 타입이 (가 C 레벨에서 이중 연결리스트를 이용하여 구현되지만), 그것은 링크 된리스트는 아니다. 따라서 " 파이썬에서 링크 된리스트 대신에 무엇을 사용 하겠습니까?" 이 경우 첫 번째 대답은 (필요한 경우) 일반 파이썬 목록이어야합니다 (연결된 목록이 아닙니다).
jfs

3
@JFSebastian : 거의 동의합니다. :)이 대답은 "다른 언어로 된 링크 된 목록을 사용하는 문제를 해결하는 파이썬적인 방법은 무엇입니까?" 링크 된 목록이 유용하지 않다는 것은 아닙니다. 단지 deque가 작동하지 않는 문제는 매우 드 that니다.
Emil Stenström

9
"Pythonic"과는 아무런 관련이 없습니다. 링크 된 목록은 deque와 다른 데이터 구조이며, 두 가지 지원을 통해 다양한 작업에서 서로 다른 실행 시간이 있습니다.
Thanatos

4
@ dimo414 : 링크 된 목록은 일반적으로 linked_list[n]O (n)이므로 인덱싱을 금지합니다 (no ). 대기열에서 제거하면 O (1)에서 수행됩니다. 그러나 목록에 반복자를 제공 한 연결된 목록은 O (1) 삽입 및 제거를 허용 할 수 있지만 deques는 벡터와 같이 O (n)입니다. (앞면과 끝 부분을 제외하고, deque와 링크 된 목록이 모두 O (1)입니다. deque는 O (1)로 상각 될 가능성이 있습니다. 그러나 연결된 목록은 그렇지 않습니다.)
Thanatos

3
@MadPhysicist "[deque]는 이름이 다르더라도 거의 모든 방식으로 연결된 목록처럼 동작합니다." — 그것은 틀리거나 의미가 없다 : 링크 된리스트는 시간 복잡성에 대해 다른 보장을 제공 할 수 있기 때문에 잘못되었다. 이다 O(n)). "거의 모든 방법"이 큰 O의 차이를 무시할 수 있다면, 파이썬 내장 목록을 pop (0)이 아닌 경우 deque로 사용할 수 있기 때문에 명령문은 의미가 없습니다. (0, v) 큰 O 보장 .
jfs

69

나는 다른 날에 이것을 썼다

#! /usr/bin/env python

class Node(object):
    def __init__(self):
        self.data = None # contains the data
        self.next = None # contains the reference to the next node


class LinkedList:
    def __init__(self):
        self.cur_node = None

    def add_node(self, data):
        new_node = Node() # create a new node
        new_node.data = data
        new_node.next = self.cur_node # link the new node to the 'previous' node.
        self.cur_node = new_node #  set the current node to the new one.

    def list_print(self):
        node = self.cur_node # cant point to ll!
        while node:
            print node.data
            node = node.next



ll = LinkedList()
ll.add_node(1)
ll.add_node(2)
ll.add_node(3)

ll.list_print()

어떻게 목록을 살펴보고 특정 데이터가있는 특정 노드를 검색 할 수 있습니까?
locoboy

1
@locoboy 그렇게하는 코드는의 코드와 논리적으로 비슷 list_print()합니다.
Dennis

목록을 역순으로 표시

35

허용되는 답변은 다소 복잡합니다. 보다 표준적인 디자인은 다음과 같습니다.

L = LinkedList()
L.insert(1)
L.insert(1)
L.insert(2)
L.insert(4)
print L
L.clear()
print L

Thomas Watnedal이 권장 LinkedList하는 간단한 C ++ 디자인 및 17 장 : 링크 된 목록을 기반으로 하는 간단한 클래스 입니다.

class Node:
    def __init__(self, value = None, next = None):
        self.value = value
        self.next = next

    def __str__(self):
        return 'Node ['+str(self.value)+']'

class LinkedList:
    def __init__(self):
        self.first = None
        self.last = None

    def insert(self, x):
        if self.first == None:
            self.first = Node(x, None)
            self.last = self.first
        elif self.last == self.first:
            self.last = Node(x, None)
            self.first.next = self.last
        else:
            current = Node(x, None)
            self.last.next = current
            self.last = current

    def __str__(self):
        if self.first != None:
            current = self.first
            out = 'LinkedList [\n' +str(current.value) +'\n'
            while current.next != None:
                current = current.next
                out += str(current.value) + '\n'
            return out + ']'
        return 'LinkedList []'

    def clear(self):
        self.__init__()

8
나는이 답변을 좋아한다. 하나의 니트, 나는 그것이 X is None선호 된다고 생각합니다 ==. stackoverflow.com/a/2988117/1740227
mateor

두 번째 분기의 세 번째 분기가 insert특별한 경우가 아니므로 elif절을 완전히 제거 할 수 있습니까?
Jaime

17

변경 불가능한 목록은 2 개의 튜플을 통해 가장 잘 표현되며 없음은 NIL을 나타냅니다. 이러한 목록의 간단한 공식화를 위해이 함수를 사용할 수 있습니다.

def mklist(*args):
    result = None
    for element in reversed(args):
        result = (element, result)
    return result

이러한 목록으로 작업하려면 메소드를 도입하는 것보다 LISP 함수의 전체 컬렉션 (즉, 첫 번째, 두 번째, n 번째 등)을 제공하고 싶습니다.


13

다음은 파이썬의 시퀀스 유형과 비슷한 인터페이스를 가진 약간 더 복잡한 버전의 링크 된 목록 클래스입니다 (예 : 인덱싱, 슬라이싱, 임의 시퀀스와의 연결 등 지원). O (1) 접두어를 가져야하며, 튜플과 상호 교환없이 사용할 수 있어야하며 데이터를 복사하지 않으면 데이터를 복사하지 않습니다.

파이썬 클래스는 분명히 조금 더 무겁기 때문에 lisp cons 셀만큼 공간이나 시간 효율적이지 않을 것입니다 ( "__slots__ = '_head','_tail' 메모리 사용을 줄이기 위해 "로 있습니다). 그러나 원하는 큰 O 성능 특성을 갖습니다.

사용 예 :

>>> l = LinkedList([1,2,3,4])
>>> l
LinkedList([1, 2, 3, 4])
>>> l.head, l.tail
(1, LinkedList([2, 3, 4]))

# Prepending is O(1) and can be done with:
LinkedList.cons(0, l)
LinkedList([0, 1, 2, 3, 4])
# Or prepending arbitrary sequences (Still no copy of l performed):
[-1,0] + l
LinkedList([-1, 0, 1, 2, 3, 4])

# Normal list indexing and slice operations can be performed.
# Again, no copy is made unless needed.
>>> l[1], l[-1], l[2:]
(2, 4, LinkedList([3, 4]))
>>> assert l[2:] is l.next.next

# For cases where the slice stops before the end, or uses a
# non-contiguous range, we do need to create a copy.  However
# this should be transparent to the user.
>>> LinkedList(range(100))[-10::2]
LinkedList([90, 92, 94, 96, 98])

이행:

import itertools

class LinkedList(object):
    """Immutable linked list class."""

    def __new__(cls, l=[]):
        if isinstance(l, LinkedList): return l # Immutable, so no copy needed.
        i = iter(l)
        try:
            head = i.next()
        except StopIteration:
            return cls.EmptyList   # Return empty list singleton.

        tail = LinkedList(i)

        obj = super(LinkedList, cls).__new__(cls)
        obj._head = head
        obj._tail = tail
        return obj

    @classmethod
    def cons(cls, head, tail):
        ll =  cls([head])
        if not isinstance(tail, cls):
            tail = cls(tail)
        ll._tail = tail
        return ll

    # head and tail are not modifiable
    @property  
    def head(self): return self._head

    @property
    def tail(self): return self._tail

    def __nonzero__(self): return True

    def __len__(self):
        return sum(1 for _ in self)

    def __add__(self, other):
        other = LinkedList(other)

        if not self: return other   # () + l = l
        start=l = LinkedList(iter(self))  # Create copy, as we'll mutate

        while l:
            if not l._tail: # Last element?
                l._tail = other
                break
            l = l._tail
        return start

    def __radd__(self, other):
        return LinkedList(other) + self

    def __iter__(self):
        x=self
        while x:
            yield x.head
            x=x.tail

    def __getitem__(self, idx):
        """Get item at specified index"""
        if isinstance(idx, slice):
            # Special case: Avoid constructing a new list, or performing O(n) length 
            # calculation for slices like l[3:].  Since we're immutable, just return
            # the appropriate node. This becomes O(start) rather than O(n).
            # We can't do this for  more complicated slices however (eg [l:4]
            start = idx.start or 0
            if (start >= 0) and (idx.stop is None) and (idx.step is None or idx.step == 1):
                no_copy_needed=True
            else:
                length = len(self)  # Need to calc length.
                start, stop, step = idx.indices(length)
                no_copy_needed = (stop == length) and (step == 1)

            if no_copy_needed:
                l = self
                for i in range(start): 
                    if not l: break # End of list.
                    l=l.tail
                return l
            else:
                # We need to construct a new list.
                if step < 1:  # Need to instantiate list to deal with -ve step
                    return LinkedList(list(self)[start:stop:step])
                else:
                    return LinkedList(itertools.islice(iter(self), start, stop, step))
        else:       
            # Non-slice index.
            if idx < 0: idx = len(self)+idx
            if not self: raise IndexError("list index out of range")
            if idx == 0: return self.head
            return self.tail[idx-1]

    def __mul__(self, n):
        if n <= 0: return Nil
        l=self
        for i in range(n-1): l += self
        return l
    def __rmul__(self, n): return self * n

    # Ideally we should compute the has ourselves rather than construct
    # a temporary tuple as below.  I haven't impemented this here
    def __hash__(self): return hash(tuple(self))

    def __eq__(self, other): return self._cmp(other) == 0
    def __ne__(self, other): return not self == other
    def __lt__(self, other): return self._cmp(other) < 0
    def __gt__(self, other): return self._cmp(other) > 0
    def __le__(self, other): return self._cmp(other) <= 0
    def __ge__(self, other): return self._cmp(other) >= 0

    def _cmp(self, other):
        """Acts as cmp(): -1 for self<other, 0 for equal, 1 for greater"""
        if not isinstance(other, LinkedList):
            return cmp(LinkedList,type(other))  # Arbitrary ordering.

        A, B = iter(self), iter(other)
        for a,b in itertools.izip(A,B):
           if a<b: return -1
           elif a > b: return 1

        try:
            A.next()
            return 1  # a has more items.
        except StopIteration: pass

        try:
            B.next()
            return -1  # b has more items.
        except StopIteration: pass

        return 0  # Lists are equal

    def __repr__(self):
        return "LinkedList([%s])" % ', '.join(map(repr,self))

class EmptyList(LinkedList):
    """A singleton representing an empty list."""
    def __new__(cls):
        return object.__new__(cls)

    def __iter__(self): return iter([])
    def __nonzero__(self): return False

    @property
    def head(self): raise IndexError("End of list")

    @property
    def tail(self): raise IndexError("End of list")

# Create EmptyList singleton
LinkedList.EmptyList = EmptyList()
del EmptyList

나는 그것이 놀랍지 않다고 생각하지만,이 8 살짜리 (!) 예제는 파이썬 3에서는 작동하지 않습니다 :)
Andy Hayden

1
새로운 설명 과 약간의 전반적인 설명을 제공하십시오.
anukalp

7

llist — Python의 링크 된 목록 데이터 유형

llist 모듈은 연결된 목록 데이터 구조를 구현합니다. 이중 연결 목록, 즉 dllist단일 연결 데이터 구조를 지원 sllist합니다.

dllist 객체

이 개체는 이중 연결 목록 데이터 구조를 나타냅니다.

first

dllistnode목록의 첫 번째 개체 None목록이 비어있는 경우

last

dllistnode목록의 마지막 개체 목록이 비어있는 경우 없음

dllist 객체는 다음 방법도 지원합니다.

append(x)

x목록의 오른쪽에 추가 하고 삽입 된 상태로 반환 dllistnode합니다.

appendleft(x)

x목록의 왼쪽에 추가 하고 insert를 반환 dllistnode합니다.

appendright(x)

x목록의 오른쪽에 추가 하고 삽입 된 상태로 반환 dllistnode합니다.

clear()

목록에서 모든 노드를 제거하십시오.

extend(iterable)

iterable목록의 오른쪽 에서 요소를 추가 하십시오.

extendleft(iterable)

iterable목록의 왼쪽 에서 요소를 추가 하십시오.

extendright(iterable)

iterable목록의 오른쪽 에서 요소를 추가 하십시오.

insert(x[, before])

지정되지 않은 x경우 목록의 오른쪽에 추가 before하거나 x의 왼쪽에 삽입 하십시오 dllistnode before. 삽입 삽입 dllistnode.

nodeat(index)

반환 노드 (유형의 dllistnode)에서 index.

pop()

목록의 오른쪽에서 요소 값을 제거하고 반환하십시오.

popleft()

목록의 왼쪽에서 요소 값을 제거하고 반환하십시오.

popright()

목록의 오른쪽에서 요소의 값을 제거하고 반환

remove(node)

없애다 node목록에서 하고 저장된 요소를 리턴하십시오.

dllistnode 사물

수업 llist.dllistnode([value])

다음과 같이 초기화 된 새 이중 연결 목록 노드를 반환합니다 (선택 사항). value .

dllistnode 객체는 다음과 같은 속성을 제공합니다.

next

목록의 다음 노드 이 속성은 읽기 전용입니다.

prev

목록의 이전 노드 이 속성은 읽기 전용입니다.

value

이 노드에 저장된 값. 이 참조에서 컴파일

슬릿

클래스 llist.sllist([iterable]) 반환의 요소로 초기화 된 새로운 단일 연결리스트 iterable. iterable을 지정하지 않으면 새 항목 sllist이 비어 있습니다.

sllist개체에 대해 유사한 속성 및 작업 집합이 정의되어 있습니다. 자세한 내용은이 참조를 참조하십시오.


이것에 대한 소스가 있습니까? python3에서 작동합니까?
iggy12345

4
class Node(object):
    def __init__(self, data=None, next=None):
        self.data = data
        self.next = next

    def setData(self, data):
        self.data = data
        return self.data

    def setNext(self, next):
        self.next = next

    def getNext(self):
        return self.next

    def hasNext(self):
        return self.next != None


class singleLinkList(object):

    def __init__(self):
        self.head = None

    def isEmpty(self):
        return self.head == None

    def insertAtBeginning(self, data):
        newNode = Node()
        newNode.setData(data)

        if self.listLength() == 0:
            self.head = newNode
        else:
            newNode.setNext(self.head)
            self.head = newNode

    def insertAtEnd(self, data):
        newNode = Node()
        newNode.setData(data)

        current = self.head

        while current.getNext() != None:
            current = current.getNext()

        current.setNext(newNode)

    def listLength(self):
        current = self.head
        count = 0

        while current != None:
            count += 1
            current = current.getNext()
        return count

    def print_llist(self):
        current = self.head
        print("List Start.")
        while current != None:
            print(current.getData())
            current = current.getNext()

        print("List End.")



if __name__ == '__main__':
    ll = singleLinkList()
    ll.insertAtBeginning(55)
    ll.insertAtEnd(56)
    ll.print_llist()
    print(ll.listLength())

2

이 추가 기능을 Nick Stinemates를 기반으로했습니다.

def add_node_at_end(self, data):
    new_node = Node()
    node = self.curr_node
    while node:
        if node.next == None:
            node.next = new_node
            new_node.next = None
            new_node.data = data
        node = node.next

그가 처음에 새로운 노드를 추가하는 방법은 일반적으로 끝에 새로운 노드를 추가하는 많은 구현을 보았지만 무엇이든 재미 있습니다.


2

다음은 내가 생각해 낸 것입니다. 그것은에 similer의 리카르도 C.의 그것을 위해 대신 역으로 숫자를 인쇄를 제외하고,이 스레드. 또한 일반적인 Python 목록처럼 목록을 인쇄하기 위해 LinkedList 객체를 Python Iterator로 만들었습니다.

class Node:

    def __init__(self, data=None):
        self.data = data
        self.next = None

    def __str__(self):
        return str(self.data)


class LinkedList:

    def __init__(self):
        self.head = None
        self.curr = None
        self.tail = None

    def __iter__(self):
        return self

    def next(self):
        if self.head and not self.curr:
            self.curr = self.head
            return self.curr
        elif self.curr.next:
            self.curr = self.curr.next
            return self.curr
        else:
            raise StopIteration

    def append(self, data):
        n = Node(data)
        if not self.head:
            self.head = n
            self.tail = n
        else:
            self.tail.next = n
            self.tail = self.tail.next


# Add 5 nodes
ll = LinkedList()
for i in range(1, 6):
    ll.append(i)

# print out the list
for n in ll:
    print n

"""
Example output:
$ python linked_list.py
1
2
3
4
5
"""

StopIteration을 발생시키기 전에 버그가있는 것 같습니다. 현재 노드를 내부 상태 조각으로 유지하려면 다음에 연결된 목록이 반복 될 때 반복을 중지하기 전에 재설정해야 첫 번째 절이 시작됩니다.
Tim Wilder

2

방금 재미있는 장난감으로 이것을 했습니다. 밑줄로 접두어 붙은 메소드를 건드리지 않는 한 불변이어야하며 인덱싱 및과 같은 많은 Python 마법을 구현합니다 len.


1

불변의 연결리스트를 사용할 때 파이썬의 튜플을 직접 사용하는 것을 고려하십시오.

ls = (1, 2, 3, 4, 5)

def first(ls): return ls[0]
def rest(ls): return ls[1:]

정말 쉽습니다. len (ls), x in ls 등과 같은 추가 기능을 유지할 수 있습니다.


튜플은 그가 요구 한 성능 특성이 없습니다. rest ()는 새 헤드를 구성하는 것처럼 연결된 목록의 O (1)과 반대로 O (n)입니다.
Brian

권리. 요점은 : 알고리즘을 구현하기 위해 링크 된 목록을 요청하지 말고 파이썬 기능을 사용하여 알고리즘을 최적으로 구현하십시오. 예를 들어 "for x in t :"를 사용하여 파이썬 튜플을 반복하는 것과 같이 링크 된 목록을 반복하는 것은 O (n)입니다.
Ber

튜플을 사용하여 링크 된 목록을 구현하는 올바른 방법은 여기에서 받아 들여지는 대답이라고 생각합니다. 길은 불변 배열 같은 객체를 사용합니다
Claudiu

1
class LL(object):
    def __init__(self,val):
        self.val = val
        self.next = None

    def pushNodeEnd(self,top,val):
        if top is None:
            top.val=val
            top.next=None
        else:
            tmp=top
            while (tmp.next != None):
                tmp=tmp.next        
            newNode=LL(val)
            newNode.next=None
            tmp.next=newNode

    def pushNodeFront(self,top,val):
        if top is None:
            top.val=val
            top.next=None
        else:
            newNode=LL(val)
            newNode.next=top
            top=newNode

    def popNodeFront(self,top):
        if top is None:
            return
        else:
            sav=top
            top=top.next
        return sav

    def popNodeEnd(self,top):
        if top is None:
            return
        else:
            tmp=top
            while (tmp.next != None):
                prev=tmp
                tmp=tmp.next
            prev.next=None
        return tmp

top=LL(10)
top.pushNodeEnd(top, 20)
top.pushNodeEnd(top, 30)
pop=top.popNodeEnd(top)
print (pop.val)

1

Python 2.x 및 3.x 단일 링크 목록 클래스를 https://pypi.python.org/pypi/linked_list_mod/에

CPython 2.7, CPython 3.4, Pypy 2.3.1, Pypy3 2.3.1 및 Jython 2.7b2로 테스트되었으며 멋진 자동 테스트 스위트가 제공됩니다.

LIFO 및 FIFO 클래스도 포함됩니다.

그들은 불변하지 않습니다.


1
class LinkedStack:
'''LIFO Stack implementation using a singly linked list for storage.'''

_ToList = []

#---------- nested _Node class -----------------------------
class _Node:
    '''Lightweight, nonpublic class for storing a singly linked node.'''
    __slots__ = '_element', '_next'     #streamline memory usage

    def __init__(self, element, next):
        self._element = element
        self._next = next

#--------------- stack methods ---------------------------------
def __init__(self):
    '''Create an empty stack.'''
    self._head = None
    self._size = 0

def __len__(self):
    '''Return the number of elements in the stack.'''
    return self._size

def IsEmpty(self):
    '''Return True if the stack is empty'''
    return  self._size == 0

def Push(self,e):
    '''Add element e to the top of the Stack.'''
    self._head = self._Node(e, self._head)      #create and link a new node
    self._size +=1
    self._ToList.append(e)

def Top(self):
    '''Return (but do not remove) the element at the top of the stack.
       Raise exception if the stack is empty
    '''

    if self.IsEmpty():
        raise Exception('Stack is empty')
    return  self._head._element             #top of stack is at head of list

def Pop(self):
    '''Remove and return the element from the top of the stack (i.e. LIFO).
       Raise exception if the stack is empty
    '''
    if self.IsEmpty():
        raise Exception('Stack is empty')
    answer = self._head._element
    self._head = self._head._next       #bypass the former top node
    self._size -=1
    self._ToList.remove(answer)
    return answer

def Count(self):
    '''Return how many nodes the stack has'''
    return self.__len__()

def Clear(self):
    '''Delete all nodes'''
    for i in range(self.Count()):
        self.Pop()

def ToList(self):
    return self._ToList

1

연결리스트 클래스

class LinkedStack:
# Nested Node Class
class Node:
    def __init__(self, element, next):
        self.__element = element
        self.__next = next

    def get_next(self):
        return self.__next

    def get_element(self):
        return self.__element

def __init__(self):
    self.head = None
    self.size = 0
    self.data = []

def __len__(self):
    return self.size

def __str__(self):
    return str(self.data)

def is_empty(self):
    return self.size == 0

def push(self, e):
    newest = self.Node(e, self.head)
    self.head = newest
    self.size += 1
    self.data.append(newest)

def top(self):
    if self.is_empty():
        raise Empty('Stack is empty')
    return self.head.__element

def pop(self):
    if self.is_empty():
        raise Empty('Stack is empty')
    answer = self.head.element
    self.head = self.head.next
    self.size -= 1
    return answer

용법

from LinkedStack import LinkedStack

x = LinkedStack()

x.push(10)
x.push(25)
x.push(55)


for i in range(x.size - 1, -1, -1):

    print '|', x.data[i].get_element(), '|' ,
    #next object

    if x.data[i].get_next() == None:
        print '--> None'
    else:
        print  x.data[i].get_next().get_element(), '-|---->  ',

산출

| 55 | 25 -|---->   | 25 | 10 -|---->   | 10 | --> None

1

다음은 간단한 구현입니다.

class Node:
    def __init__(self):
        self.data = None
        self.next = None
    def __str__(self):
        return "Data %s: Next -> %s"%(self.data, self.next)

class LinkedList:
    def __init__(self):
        self.head = Node()
        self.curNode = self.head
    def insertNode(self, data):
        node = Node()
        node.data = data
        node.next = None
        if self.head.data == None:
            self.head = node
            self.curNode = node
        else:
            self.curNode.next = node
            self.curNode = node
    def printList(self):
        print self.head

l = LinkedList()
l.insertNode(1)
l.insertNode(2)
l.insertNode(34)

산출:

Data 1: Next -> Data 2: Next -> Data 34: Next -> Data 4: Next -> None

1

내 해결책은 다음과 같습니다.

이행

class Node:
  def __init__(self, initdata):
    self.data = initdata
    self.next = None

  def get_data(self):
    return self.data

  def set_data(self, data):
    self.data = data

  def get_next(self):
    return self.next

  def set_next(self, node):
    self.next = node


# ------------------------ Link List class ------------------------------- #
class LinkList:

  def __init__(self):
    self.head = None

  def is_empty(self):
    return self.head == None

  def traversal(self, data=None):
    node = self.head
    index = 0
    found = False
    while node is not None and not found:
      if node.get_data() == data:
        found = True
      else:
        node = node.get_next()
        index += 1
    return (node, index)

  def size(self):
    _, count = self.traversal(None)
    return count

  def search(self, data):
    node, _ = self.traversal(data)
    return node

  def add(self, data):
    node = Node(data)
    node.set_next(self.head)
    self.head = node

  def remove(self, data):
    previous_node = None
    current_node = self.head
    found = False
    while current_node is not None and not found:
      if current_node.get_data() == data:
        found = True
        if previous_node:
          previous_node.set_next(current_node.get_next())
        else:
          self.head = current_node
      else:
        previous_node = current_node
        current_node = current_node.get_next()
    return found

용법

link_list = LinkList()
link_list.add(10)
link_list.add(20)
link_list.add(30)
link_list.add(40)
link_list.add(50)
link_list.size()
link_list.search(30)
link_list.remove(20)

원래 구현 아이디어

http://interactivepython.org/runestone/static/pythonds/BasicDS/ImplementinganUnorderListLinkedLists.html


0

아래의 구현으로 청구서가 상당히 우아하게 작성됩니다.

'''singly linked lists, by Yingjie Lan, December 1st, 2011'''

class linkst:
    '''Singly linked list, with pythonic features.
The list has pointers to both the first and the last node.'''
    __slots__ = ['data', 'next'] #memory efficient
    def __init__(self, iterable=(), data=None, next=None):
        '''Provide an iterable to make a singly linked list.
Set iterable to None to make a data node for internal use.'''
        if iterable is not None: 
            self.data, self.next = self, None
            self.extend(iterable)
        else: #a common node
            self.data, self.next = data, next

    def empty(self):
        '''test if the list is empty'''
        return self.next is None

    def append(self, data):
        '''append to the end of list.'''
        last = self.data
        self.data = last.next = linkst(None, data)
        #self.data = last.next

    def insert(self, data, index=0):
        '''insert data before index.
Raise IndexError if index is out of range'''
        curr, cat = self, 0
        while cat < index and curr:
            curr, cat = curr.next, cat+1
        if index<0 or not curr:
            raise IndexError(index)
        new = linkst(None, data, curr.next)
        if curr.next is None: self.data = new
        curr.next = new

    def reverse(self):
        '''reverse the order of list in place'''
        current, prev = self.next, None
        while current: #what if list is empty?
            next = current.next
            current.next = prev
            prev, current = current, next
        if self.next: self.data = self.next
        self.next = prev

    def delete(self, index=0):
        '''remvoe the item at index from the list'''
        curr, cat = self, 0
        while cat < index and curr.next:
            curr, cat = curr.next, cat+1
        if index<0 or not curr.next:
            raise IndexError(index)
        curr.next = curr.next.next
        if curr.next is None: #tail
            self.data = curr #current == self?

    def remove(self, data):
        '''remove first occurrence of data.
Raises ValueError if the data is not present.'''
        current = self
        while current.next: #node to be examined
            if data == current.next.data: break
            current = current.next #move on
        else: raise ValueError(data)
        current.next = current.next.next
        if current.next is None: #tail
            self.data = current #current == self?

    def __contains__(self, data):
        '''membership test using keyword 'in'.'''
        current = self.next
        while current:
            if data == current.data:
                return True
            current = current.next
        return False

    def __iter__(self):
        '''iterate through list by for-statements.
return an iterator that must define the __next__ method.'''
        itr = linkst()
        itr.next = self.next
        return itr #invariance: itr.data == itr

    def __next__(self):
        '''the for-statement depends on this method
to provide items one by one in the list.
return the next data, and move on.'''
        #the invariance is checked so that a linked list
        #will not be mistakenly iterated over
        if self.data is not self or self.next is None:
            raise StopIteration()
        next = self.next
        self.next = next.next
        return next.data

    def __repr__(self):
        '''string representation of the list'''
        return 'linkst(%r)'%list(self)

    def __str__(self):
        '''converting the list to a string'''
        return '->'.join(str(i) for i in self)

    #note: this is NOT the class lab! see file linked.py.
    def extend(self, iterable):
        '''takes an iterable, and append all items in the iterable
to the end of the list self.'''
        last = self.data
        for i in iterable:
            last.next = linkst(None, i)
            last = last.next
        self.data = last

    def index(self, data):
        '''TODO: return first index of data in the list self.
    Raises ValueError if the value is not present.'''
        #must not convert self to a tuple or any other containers
        current, idx = self.next, 0
        while current:
            if current.data == data: return idx
            current, idx = current.next, idx+1
        raise ValueError(data)

0
class LinkedList:
    def __init__(self, value):
        self.value = value
        self.next = None

    def insert(self, node):
        if not self.next:
            self.next = node
        else:
            self.next.insert(node)

    def __str__(self):
        if self.next:
            return '%s -> %s' % (self.value, str(self.next))
        else:
            return ' %s ' % self.value

if __name__ == "__main__":
    items = ['a', 'b', 'c', 'd', 'e']    
    ll = None
    for item in items:
        if ll:
            next_ll = LinkedList(item)
            ll.insert(next_ll)
        else:
            ll = LinkedList(item)
    print('[ %s ]' % ll)

0

우선, 나는 당신이 링크 된 목록을 원한다고 가정합니다. 실제로 collections.deque현재 CPython 구현이 이중으로 연결된 블록 목록 인 각 블록은 62 개의화물 객체 배열을 포함하는을 사용할 수 있습니다. 연결된 목록의 기능을 포함합니다. llistpypi에서 호출 된 C 확장자를 검색 할 수도 있습니다 . 순수 파이썬으로 연결 목록 ADT를 따라하기 쉬운 구현을 원한다면 다음과 같은 최소 구현을 살펴볼 수 있습니다.

class Node (object):
    """ Node for a linked list. """
    def __init__ (self, value, next=None):
        self.value = value
        self.next = next

class LinkedList (object):
    """ Linked list ADT implementation using class. 
        A linked list is a wrapper of a head pointer
        that references either None, or a node that contains 
        a reference to a linked list.
    """
    def __init__ (self, iterable=()):
        self.head = None
        for x in iterable:
            self.head = Node(x, self.head)

    def __iter__ (self):
        p = self.head
        while p is not None:
            yield p.value
            p = p.next

    def prepend (self, x):  # 'appendleft'
        self.head = Node(x, self.head)

    def reverse (self):
        """ In-place reversal. """
        p = self.head
        self.head = None
        while p is not None:
            p0, p = p, p.next
            p0.next = self.head
            self.head = p0

if __name__ == '__main__':
    ll = LinkedList([6,5,4])
    ll.prepend(3); ll.prepend(2)
    print list(ll)
    ll.reverse()
    print list(ll)

0

이중 연결 목록 샘플 (linkedlist.py로 저장) :

class node:
    def __init__(self, before=None, cargo=None, next=None): 
        self._previous = before
        self._cargo = cargo 
        self._next  = next 

    def __str__(self):
        return str(self._cargo) or None 

class linkedList:
    def __init__(self): 
        self._head = None 
        self._length = 0

    def add(self, cargo):
        n = node(None, cargo, self._head)
        if self._head:
            self._head._previous = n
        self._head = n
        self._length += 1

    def search(self,cargo):
        node = self._head
        while (node and node._cargo != cargo):
            node = node._next
        return node

    def delete(self,cargo):
        node = self.search(cargo)
        if node:
            prev = node._previous
            nx = node._next
            if prev:
                prev._next = node._next
            else:
                self._head = nx
                nx._previous = None
            if nx:
                nx._previous = prev 
            else:
                prev._next = None
        self._length -= 1

    def __str__(self):
        print 'Size of linked list: ',self._length
        node = self._head
        while node:
            print node
            node = node._next

테스트 (test.py로 저장) :

from linkedlist import node, linkedList

def test():

    print 'Testing Linked List'

    l = linkedList()

    l.add(10)
    l.add(20)
    l.add(30)
    l.add(40)
    l.add(50)
    l.add(60)

    print 'Linked List after insert nodes:'
    l.__str__()

    print 'Search some value, 30:'
    node = l.search(30)
    print node

    print 'Delete some value, 30:'
    node = l.delete(30)
    l.__str__()

    print 'Delete first element, 60:'
    node = l.delete(60)
    l.__str__()

    print 'Delete last element, 10:'
    node = l.delete(10)
    l.__str__()


if __name__ == "__main__":
    test()

출력 :

Testing Linked List
Linked List after insert nodes:
Size of linked list:  6
60
50
40
30
20
10
Search some value, 30:
30
Delete some value, 30:
Size of linked list:  5
60
50
40
20
10
Delete first element, 60:
Size of linked list:  4
50
40
20
10
Delete last element, 10:
Size of linked list:  3
50
40
20

0

또한 기본 두 개의 Node 및 Linked List 클래스가있는 튜토리얼과 삽입, 삭제, 역 분류, 정렬 등을위한 추가 메소드를 기반으로 단일 링크 목록을 작성했습니다.

가장 좋지 않거나 가장 쉬운 것은 아니지만 정상적으로 작동합니다.

"""
🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏

Single Linked List (SLL):
A simple object-oriented implementation of Single Linked List (SLL) 
with some associated methods, such as create list, count nodes, delete nodes, and such. 

🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏
"""

class Node:
    """
    Instantiates a node
    """
    def __init__(self, value):
        """
        Node class constructor which sets the value and link of the node

        """
        self.info = value
        self.link = None

class SingleLinkedList:
    """
    Instantiates the SLL class
    """
    def __init__(self):
        """
        SLL class constructor which sets the value and link of the node

        """
        self.start = None

    def create_single_linked_list(self):
        """
        Reads values from stdin and appends them to this list and creates a SLL with integer nodes

        """
        try:
            number_of_nodes = int(input("👉   Enter a positive integer between 1-50 for the number of nodes you wish to have in the list: "))
            if number_of_nodes <= 0 or number_of_nodes > 51:
                print("💛 The number of nodes though must be an integer between 1 to 50!")
                self.create_single_linked_list()

        except Exception as e:
            print("💛 Error: ", e)
            self.create_single_linked_list()


        try:
            for _ in range(number_of_nodes):
                try:
                    data = int(input("👉   Enter an integer for the node to be inserted: "))
                    self.insert_node_at_end(data)
                except Exception as e:
                    print("💛 Error: ", e)
        except Exception as e:
            print("💛 Error: ", e)

    def count_sll_nodes(self):
        """
        Counts the nodes of the linked list

        """
        try:
            p = self.start
            n = 0
            while p is not None:
                n += 1
                p = p.link

            if n >= 1:
                print(f"💚 The number of nodes in the linked list is {n}")
            else:
                print(f"💛 The SLL does not have a node!")
        except Exception as e: 
            print("💛 Error: ", e)

    def search_sll_nodes(self, x):
        """
        Searches the x integer in the linked list
        """
        try:
            position =  1
            p = self.start
            while p is not None:
                if p.info == x:
                    print(f"💚 YAAAY! We found {x} at position {position}")
                    return True

                #Increment the position
                position += 1 
                #Assign the next node to the current node
                p = p.link
            else:
                print(f"💔 Sorry! We couldn't find {x} at any position. Maybe, you might want to use option 9 and try again later!")
                return False
        except Exception as e:
            print("💛 Error: ", e)

    def display_sll(self):
        """
        Displays the list
        """
        try:
            if self.start is None:
                print("💛 Single linked list is empty!")
                return

            display_sll = "💚 Single linked list nodes are: "
            p = self.start
            while p is not None:
                display_sll += str(p.info) + "\t"
                p = p.link

            print(display_sll)

        except Exception as e:
            print("💛 Error: ", e) 

    def insert_node_in_beginning(self, data):
        """
        Inserts an integer in the beginning of the linked list

        """
        try:
            temp = Node(data)
            temp.link = self.start
            self.start = temp
        except Exception as e:
            print("💛 Error: ", e)

    def insert_node_at_end(self, data):
        """
        Inserts an integer at the end of the linked list

        """
        try:            
            temp = Node(data)
            if self.start is None:
                self.start = temp
                return

            p = self.start  
            while p.link is not None:
                p = p.link
            p.link = temp
        except Exception as e:
            print("💛 Error: ", e)


    def insert_node_after_another(self, data, x):
        """
        Inserts an integer after the x node

        """
        try:
            p = self.start

            while p is not None:
                if p.info == x:
                    break
                p = p.link

            if p is None:
                print(f"💔 Sorry! {x} is not in the list.")
            else:
                temp = Node(data)
                temp.link = p.link
                p.link = temp
        except Exception as e: 
            print("💛 Error: ", e)


    def insert_node_before_another(self, data, x):
        """
        Inserts an integer before the x node

        """

        try:

            # If list is empty
            if self.start is None:
                print("💔 Sorry! The list is empty.")
                return 
            # If x is the first node, and new node should be inserted before the first node
            if x == self.start.info:
                temp = Node(data)
                temp.link = p.link
                p.link = temp

            # Finding the reference to the prior node containing x
            p = self.start
            while p.link is not None:
                if p.link.info == x:
                    break
                p = p.link

            if p.link is not None:
                print(f"💔 Sorry! {x} is not in the list.")
            else:
                temp = Node(data)
                temp.link = p.link
                p.link = temp           

        except Exception as e:
            print("💛 Error: ", e)

    def insert_node_at_position(self, data, k):
        """
        Inserts an integer in k position of the linked list

        """
        try:
            # if we wish to insert at the first node
            if k == 1:
                temp = Node(data)
                temp.link = self.start
                self.start = temp
                return

            p = self.start
            i = 1

            while i < k-1 and p is not None:
                p = p.link
                i += 1

            if p is None:
                print(f"💛 The max position is {i}") 
            else:    
                temp = Node(data)
                temp.link = self.start
                self.start = temp

        except Exception as e:
            print("💛 Error: ", e)

    def delete_a_node(self, x):
        """
        Deletes a node of a linked list

        """
        try:
            # If list is empty
            if self.start is None:
                print("💔 Sorry! The list is empty.")
                return

            # If there is only one node
            if self.start.info == x:
                self.start = self.start.link

            # If more than one node exists
            p = self.start
            while p.link is not None:
                if p.link.info == x:
                    break   
                p = p.link

            if p.link is None:
                print(f"💔 Sorry! {x} is not in the list.")
            else:
                p.link = p.link.link

        except Exception as e:
            print("💛 Error: ", e)

    def delete_sll_first_node(self):
        """
        Deletes the first node of a linked list

        """
        try:
            if self.start is None:
                return
            self.start = self.start.link

        except Exception as e:
            print("💛 Error: ", e)


    def delete_sll_last_node(self):
        """
        Deletes the last node of a linked list

        """
        try:

            # If the list is empty
            if self.start is None:
                return

            # If there is only one node
            if self.start.link is None:
                self.start = None
                return

            # If there is more than one node    
            p = self.start

            # Increment until we find the node prior to the last node 
            while p.link.link is not None:
                p = p.link

            p.link = None   

        except Exception as e:
            print("💛 Error: ", e)


    def reverse_sll(self):
        """
        Reverses the linked list

        """

        try:

            prev = None
            p = self.start
            while p is not None:
                next = p.link
                p.link = prev
                prev = p
                p = next
            self.start = prev

        except Exception as e:
            print("💛 Error: ", e)


    def bubble_sort_sll_nodes_data(self):
        """
        Bubble sorts the linked list on integer values

        """

        try:

            # If the list is empty or there is only one node
            if self.start is None or self.start.link is None:
                print("💛 The list has no or only one node and sorting is not required.")
            end = None

            while end != self.start.link:
                p = self.start
                while p.link != end:
                    q = p.link
                    if p.info > q.info:
                        p.info, q.info = q.info, p.info
                    p = p.link
                end = p

        except Exception as e:
            print("💛 Error: ", e)


    def bubble_sort_sll(self):
        """
        Bubble sorts the linked list

        """

        try:

            # If the list is empty or there is only one node
            if self.start is None or self.start.link is None:
                print("💛 The list has no or only one node and sorting is not required.")
            end = None

            while end != self.start.link:
                r = p = self.start
                while p.link != end:
                    q = p.link
                    if p.info > q.info:
                        p.link = q.link
                        q.link = p
                    if  p != self.start:
                        r.link = q.link
                    else:
                        self.start = q
                    p, q = q, p
                    r = p
                    p = p.link
                end = p

        except Exception as e:
            print("💛 Error: ", e)


    def sll_has_cycle(self):
        """
        Tests the list for cycles using Tortoise and Hare Algorithm (Floyd's cycle detection algorithm)
        """

        try:

            if self.find_sll_cycle() is None:
                return False
            else:
                return True


        except Exception as e:
            print("💛 Error: ", e)


    def find_sll_cycle(self):
        """
        Finds cycles in the list, if any
        """

        try:

            # If there is one node or none, there is no cycle
            if self.start is None or self.start.link is None:
                return None

            # Otherwise, 
            slowR = self.start
            fastR = self.start

            while slowR is not None and fastR is not None:
                slowR = slowR.link
                fastR = fastR.link.link
                if slowR == fastR: 
                    return slowR

            return None

        except Exception as e:
            print("💛 Error: ", e)


    def remove_cycle_from_sll(self):
        """
        Removes the cycles
        """

        try:

            c = self.find_sll_cycle()

            # If there is no cycle
            if c is None:
                return

            print(f"💛 There is a cycle at node: ", c.info)

            p = c
            q = c
            len_cycles = 0
            while True:
                len_cycles += 1
                q = q.link

                if p == q:
                    break

            print(f"💛 The cycle length is {len_cycles}")

            len_rem_list = 0
            p = self.start

            while p != q:
                len_rem_list += 1
                p = p.link
                q = q.link

            print(f"💛 The number of nodes not included in the cycle is {len_rem_list}")

            length_list = len_rem_list + len_cycles

            print(f"💛 The SLL length is {length_list}")

            # This for loop goes to the end of the SLL, and set the last node to None and the cycle is removed. 
            p = self.start
            for _ in range(length_list-1):
                p = p.link
            p.link = None


        except Exception as e:
            print("💛 Error: ", e)


    def insert_cycle_in_sll(self, x):
        """
        Inserts a cycle at a node that contains x

        """

        try:

            if self.start is None:
                return False

            p = self.start
            px = None
            prev = None


            while p is not None:
                if p.info == x:
                    px = p
                prev = p
                p = p.link

            if px is not None:
                prev.link = px
            else:
                print(f"💔 Sorry! {x} is not in the list.")


        except Exception as e:
            print("💛 Error: ", e)


    def merge_using_new_list(self, list2):
        """
        Merges two already sorted SLLs by creating new lists
        """
        merge_list = SingleLinkedList()
        merge_list.start = self._merge_using_new_list(self.start, list2.start)
        return merge_list

    def _merge_using_new_list(self, p1, p2):
        """
        Private method of merge_using_new_list
        """
        if p1.info <= p2.info:
            Start_merge = Node(p1.info)
            p1 = p1.link
        else:
            Start_merge = Node(p2.info)
            p2 = p2.link            
        pM = Start_merge

        while p1 is not None and p2 is not None:
            if p1.info <= p2.info:
                pM.link = Node(p1.info)
                p1 = p1.link
            else:
                pM.link = Node(p2.info)
                p2 = p2.link
            pM = pM.link

        #If the second list is finished, yet the first list has some nodes
        while p1 is not None:
            pM.link = Node(p1.info)
            p1 = p1.link
            pM = pM.link

        #If the second list is finished, yet the first list has some nodes
        while p2 is not None:
            pM.link = Node(p2.info)
            p2 = p2.link
            pM = pM.link

        return Start_merge

    def merge_inplace(self, list2):
        """
        Merges two already sorted SLLs in place in O(1) of space
        """
        merge_list = SingleLinkedList()
        merge_list.start = self._merge_inplace(self.start, list2.start)
        return merge_list

    def _merge_inplace(self, p1, p2):
        """
        Merges two already sorted SLLs in place in O(1) of space
        """
        if p1.info <= p2.info:
            Start_merge = p1
            p1 = p1.link
        else:
            Start_merge = p2
            p2 = p2.link
        pM = Start_merge

        while p1 is not None and p2 is not None:
            if p1.info <= p2.info:
                pM.link = p1
                pM = pM.link
                p1 = p1.link
            else:
                pM.link = p2
                pM = pM.link
                p2 = p2.link

        if p1 is None:
            pM.link = p2
        else:
            pM.link = p1

        return Start_merge

    def merge_sort_sll(self):
        """
        Sorts the linked list using merge sort algorithm
        """
        self.start = self._merge_sort_recursive(self.start)


    def _merge_sort_recursive(self, list_start):
        """
        Recursively calls the merge sort algorithm for two divided lists
        """

        # If the list is empty or has only one node
        if list_start is None or list_start.link is None:
            return list_start

        # If the list has two nodes or more
        start_one = list_start
        start_two = self._divide_list(self_start)
        start_one = self._merge_sort_recursive(start_one)
        start_two = self._merge_sort_recursive(start_two)
        start_merge = self._merge_inplace(start_one, start_two)

        return start_merge

    def _divide_list(self, p):
        """
        Divides the linked list into two almost equally sized lists
        """

        # Refers to the third nodes of the list
        q = p.link.link

        while q is not None and p is not None:
            # Increments p one node at the time
            p = p.link
            # Increments q two nodes at the time
            q = q.link.link

        start_two = p.link
        p.link = None

        return start_two

    def concat_second_list_to_sll(self, list2):
        """
        Concatenates another SLL to an existing SLL
        """

        # If the second SLL has no node
        if list2.start is None:
            return

        # If the original SLL has no node
        if self.start is None:
            self.start = list2.start
            return

        # Otherwise traverse the original SLL
        p = self.start
        while p.link is not None:
            p = p.link

        # Link the last node to the first node of the second SLL
        p.link = list2.start



    def test_merge_using_new_list_and_inplace(self):
        """

        """

        LIST_ONE = SingleLinkedList()
        LIST_TWO = SingleLinkedList()

        LIST_ONE.create_single_linked_list()
        LIST_TWO.create_single_linked_list()

        print("1️⃣  The unsorted first list is: ")
        LIST_ONE.display_sll()

        print("2️⃣  The unsorted second list is: ")
        LIST_TWO.display_sll()


        LIST_ONE.bubble_sort_sll_nodes_data()
        LIST_TWO.bubble_sort_sll_nodes_data()

        print("1️⃣  The sorted first list is: ")
        LIST_ONE.display_sll()

        print("2️⃣  The sorted second list is: ")
        LIST_TWO.display_sll()

        LIST_THREE = LIST_ONE.merge_using_new_list(LIST_TWO)

        print("The merged list by creating a new list is: ")
        LIST_THREE.display_sll()


        LIST_FOUR = LIST_ONE.merge_inplace(LIST_TWO)

        print("The in-place merged list is: ")
        LIST_FOUR.display_sll()     


    def test_all_methods(self):
        """
        Tests all methods of the SLL class
        """

        OPTIONS_HELP = """
📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗
    Select a method from 1-19:                                                          
🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒
        ℹ️   (1)    👉  Create a single liked list (SLL).
        ℹ️   (2)    👉  Display the SLL.                            
        ℹ️   (3)    👉  Count the nodes of SLL. 
        ℹ️   (4)    👉  Search the SLL.
        ℹ️   (5)    👉  Insert a node at the beginning of the SLL.
        ℹ️   (6)    👉  Insert a node at the end of the SLL.
        ℹ️   (7)    👉  Insert a node after a specified node of the SLL.
        ℹ️   (8)    👉  Insert a node before a specified node of the SLL.
        ℹ️   (9)    👉  Delete the first node of SLL.
        ℹ️   (10)   👉  Delete the last node of the SLL.
        ℹ️   (11)   👉  Delete a node you wish to remove.                           
        ℹ️   (12)   👉  Reverse the SLL.
        ℹ️   (13)   👉  Bubble sort the SLL by only exchanging the integer values.  
        ℹ️   (14)   👉  Bubble sort the SLL by exchanging links.                    
        ℹ️   (15)   👉  Merge sort the SLL.
        ℹ️   (16)   👉  Insert a cycle in the SLL.
        ℹ️   (17)   👉  Detect if the SLL has a cycle.
        ℹ️   (18)   👉  Remove cycle in the SLL.
        ℹ️   (19)   👉  Test merging two bubble-sorted SLLs.
        ℹ️   (20)   👉  Concatenate a second list to the SLL. 
        ℹ️   (21)   👉  Exit.
📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗
        """


        self.create_single_linked_list()

        while True:

            print(OPTIONS_HELP)

            UI_OPTION = int(input("👉   Enter an integer for the method you wish to run using the above help: "))

            if UI_OPTION == 1:
                data = int(input("👉   Enter an integer to be inserted at the end of the list: "))
                x = int(input("👉   Enter an integer to be inserted after that: "))
                self.insert_node_after_another(data, x)
            elif UI_OPTION == 2:
                self.display_sll()
            elif UI_OPTION == 3:
                self.count_sll_nodes()
            elif UI_OPTION == 4:
                data = int(input("👉   Enter an integer to be searched: "))
                self.search_sll_nodes(data)
            elif UI_OPTION == 5:
                data = int(input("👉   Enter an integer to be inserted at the beginning: "))
                self.insert_node_in_beginning(data)
            elif UI_OPTION == 6:
                data = int(input("👉   Enter an integer to be inserted at the end: "))
                self.insert_node_at_end(data)
            elif UI_OPTION == 7:
                data = int(input("👉   Enter an integer to be inserted: "))
                x = int(input("👉   Enter an integer to be inserted before that: "))
                self.insert_node_before_another(data, x)
            elif UI_OPTION == 8:
                data = int(input("👉   Enter an integer for the node to be inserted: "))
                k = int(input("👉   Enter an integer for the position at which you wish to insert the node: "))
                self.insert_node_before_another(data, k)
            elif UI_OPTION == 9:
                self.delete_sll_first_node()
            elif UI_OPTION == 10:
                self.delete_sll_last_node()
            elif UI_OPTION == 11:
                data = int(input("👉   Enter an integer for the node you wish to remove: "))
                self.delete_a_node(data)
            elif UI_OPTION == 12:
                self.reverse_sll()
            elif UI_OPTION == 13:
                self.bubble_sort_sll_nodes_data()
            elif UI_OPTION == 14:
                self.bubble_sort_sll()
            elif UI_OPTION == 15:
                self.merge_sort_sll()
            elif UI_OPTION == 16:
                data = int(input("👉   Enter an integer at which a cycle has to be formed: "))
                self.insert_cycle_in_sll(data)
            elif UI_OPTION == 17:
                if self.sll_has_cycle():
                    print("💛 The linked list has a cycle. ")
                else:
                    print("💚 YAAAY! The linked list does not have a cycle. ")
            elif UI_OPTION == 18:
                self.remove_cycle_from_sll()
            elif UI_OPTION == 19:
                self.test_merge_using_new_list_and_inplace()
            elif UI_OPTION == 20:
                list2 = self.create_single_linked_list()
                self.concat_second_list_to_sll(list2)
            elif UI_OPTION == 21:
                break
            else:
                print("💛 Option must be an integer, between 1 to 21.")

            print()     



if __name__ == '__main__':
    # Instantiates a new SLL object
    SLL_OBJECT = SingleLinkedList()
    SLL_OBJECT.test_all_methods()

0

Nick Stinemates의 답변 확장

class Node(object):
    def __init__(self):
        self.data = None
        self.next = None

class LinkedList:
    def __init__(self):
        self.head = None

    def prepend_node(self, data):
        new_node = Node()
        new_node.data = data
        new_node.next = self.head
        self.head = new_node

    def append_node(self, data):
        new_node = Node()
        new_node.data = data
        current = self.head
        while current.next:
            current = current.next
        current.next = new_node

    def reverse(self):
        """ In-place reversal, modifies exiting list"""
        previous = None
        current_node = self.head

        while current_node:
            temp =  current_node.next
            current_node.next = previous
            previous = current_node
            current_node = temp
        self.head = previous

    def search(self, data):
        current_node = self.head
        try:
            while current_node.data != data:
                current_node = current_node.next
            return True
        except:
            return False

    def display(self):
        if self.head is None:
            print("Linked list is empty")
        else:
            current_node = self.head
            while current_node:
                print(current_node.data)
                current_node = current_node.next

    def list_length(self):
        list_length = 0
        current_node = self.head
        while current_node:
            list_length += 1
            current_node = current_node.next
        return list_length


def main():
    linked_list = LinkedList()

    linked_list.prepend_node(1)
    linked_list.prepend_node(2)
    linked_list.prepend_node(3)
    linked_list.append_node(24)
    linked_list.append_node(25)
    linked_list.display()
    linked_list.reverse()
    linked_list.display()
    print(linked_list.search(1))
    linked_list.reverse()
    linked_list.display()
    print("Lenght of singly linked list is: " + str(linked_list.list_length()))


if __name__ == "__main__":
    main()

-1

내 2 센트

class Node:
    def __init__(self, value=None, next=None):
        self.value = value
        self.next = next

    def __str__(self):
        return str(self.value)


class LinkedList:
    def __init__(self):
        self.first = None
        self.last = None

    def add(self, x):
        current = Node(x, None)
        try:
            self.last.next = current
        except AttributeError:
            self.first = current
            self.last = current
        else:
            self.last = current

    def print_list(self):
        node = self.first
        while node:
            print node.value
            node = node.next

ll = LinkedList()
ll.add("1st")
ll.add("2nd")
ll.add("3rd")
ll.add("4th")
ll.add("5th")

ll.print_list()

# Result: 
# 1st
# 2nd
# 3rd
# 4th
# 5th

-1
enter code here
enter code here

class node:
    def __init__(self):
        self.data = None
        self.next = None
class linked_list:
    def __init__(self):
        self.cur_node = None
        self.head = None
    def add_node(self,data):
        new_node = node()
        if self.head == None:
            self.head = new_node
            self.cur_node = new_node
        new_node.data = data
        new_node.next = None
        self.cur_node.next = new_node
        self.cur_node = new_node
    def list_print(self):
        node = self.head
        while node:
            print (node.data)
            node = node.next
    def delete(self):
        node = self.head
        next_node = node.next
        del(node)
        self.head = next_node
a = linked_list()
a.add_node(1)
a.add_node(2)
a.add_node(3)
a.add_node(4)
a.delete()
a.list_print()

당신은 이미 몇 가지 잘 대답을 가지고있는 오래된 질문에 대답하고 당신은 아무런 설명도하지 않습니다. 버전을 게시 한 이유는 무엇입니까? 이미 제시된 솔루션보다 이점이 있습니까? 아니면 다른 부가 가치? 답변을 수정하고 설명을 추가하여 답변을보다 완전하게 만드십시오.
honk

-1

내 이중 연결 목록은 누비에게 이해할 수 있습니다. C에서 DS에 익숙하다면 이것은 매우 읽기 쉽다.

# LinkedList..

class node:
    def __init__(self):           ##Cluster of Nodes' properties 
        self.data=None
        self.next=None
        self.prev=None

class linkedList():
    def __init__(self):
        self.t = node()                    // for future use
        self.cur_node = node()             // current node
        self.start=node()

    def add(self,data):                          // appending the LL

        self.new_node = node()
        self.new_node.data=data
        if self.cur_node.data is None:          
            self.start=self.new_node               //For the 1st node only

        self.cur_node.next=self.new_node
        self.new_node.prev=self.cur_node
        self.cur_node=self.new_node


    def backward_display(self):                  //Displays LL backwards
        self.t=self.cur_node
        while self.t.data is not None:
            print(self.t.data)
            self.t=self.t.prev

    def forward_display(self):                   //Displays LL Forward
        self.t=self.start
        while self.t.data is not None:
            print(self.t.data)
            self.t=self.t.next
            if self.t.next is None:
                print(self.t.data)
                break

    def main(self):                          //This is kind of the main 
                                               function in C
        ch=0
        while ch is not 4:                    //Switch-case in C 
            ch=int(input("Enter your choice:"))
            if ch is 1:
                data=int(input("Enter data to be added:"))
                ll.add(data)
                ll.main()
            elif ch is 2:
                ll.forward_display()
                ll.main()
            elif ch is 3:
                ll.backward_display()
                ll.main()
            else:
                print("Program ends!!")
                return


ll=linkedList()
ll.main()

이 코드에 더 많은 단순화가 추가 될 수 있지만, 원시 구현이 더 이해하기 쉽다고 생각했습니다.


당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.