데스크탑 복제를 사용하여 데스크탑을 캡처하고 Intel hardwareMFT를 사용하여 h264로 인코딩하는 코드를 작성 중입니다. 인코더는 NV12 형식 만 입력으로 받아들입니다. DXGI_FORMAT_B8G8R8A8_UNORM to NV12 변환기 ( https://github.com/NVIDIA/video-sdk-samples/blob/master/nvEncDXGIOutputDuplicationSample/Preproc.cpp )가 DXX_FORMAT_B8G8R8A8_UNORM에 잘 작동하며 DirectX VideoProcessor를 기반으로합니다.
문제는 특정 인텔 그래픽 하드웨어의 VideoProcessor가 DXGI_FORMAT_B8G8R8A8_UNORM에서 YUY2 로의 변환 만 지원하지만 NV12에서는 지원하지 않는다는 것입니다 .GetVideoProcessorOutputFormats를 통해 지원되는 형식을 열거하여 동일한 것을 확인했습니다. VideoProcessor Blt는 오류없이 성공했지만 출력 비디오의 프레임이 약간 픽셀 화 된 것을 볼 수 있지만 자세히 살펴보면 알 수 있습니다.
VideoProcessor는 단순히 다음 지원되는 출력 형식 (YUY2)으로 장애 조치를했으며 무의식적으로 입력이 구성된대로 NV12에 있다고 생각하는 인코더에 공급하고 있습니다. NV12와 YUY2 사이의 바이트 순서 및 서브 샘플링과 같은 차이가 거의 없기 때문에 프레임이 실패하거나 크게 손상되지 않습니다. 또한 NV12 변환을 지원하는 하드웨어에서는 픽셀 화 문제가 없습니다.
그래서이 코드 ( https://github.com/bavulapati/DXGICaptureDXColorSpaceConversionIntelEncode/blob/master/DXGICaptureDXColorSpaceConversionIntelEncode/DuplicationManager.cpp )를 기반으로 한 픽셀 쉐이더를 사용하여 색상 변환을하기로 결정했습니다 . 픽셀 셰이더를 작동시킬 수 있으며 참조 용으로 코드를 업로드했습니다 ( https://codeshare.io/5PJjxP ).
이제 두 개의 채널 인 채도 및 루마가 각각 남았습니다 (ID3D11Texture2D 텍스처). 그리고 두 개의 개별 채널을 하나의 ID3D11Texture2D 텍스처로 효율적으로 패킹하여 인코더에 동일한 피드를 제공하는 것에 대해 정말로 혼란 스럽습니다. Y 및 UV 채널을 GPU에서 단일 ID3D11Texture2D로 효율적으로 포장하는 방법이 있습니까? 비용이 많이 들고 가능한 최고의 프레임 속도를 제공하지 않기 때문에 CPU 기반 접근 방식에 정말 지쳤습니다. 사실, 텍스처를 CPU에 복사조차 꺼려합니다. CPU와 GPU간에 앞뒤로 복사하지 않고 GPU에서 수행하는 방법을 생각하고 있습니다.
나는 진전없이 꽤 오랫동안 이것을 연구 해 왔으며 도움을 주시면 감사하겠습니다.
/**
* This method is incomplete. It's just a template of what I want to achieve.
*/
HRESULT CreateNV12TextureFromLumaAndChromaSurface(ID3D11Texture2D** pOutputTexture)
{
HRESULT hr = S_OK;
try
{
//Copying from GPU to CPU. Bad :(
m_pD3D11DeviceContext->CopyResource(m_CPUAccessibleLuminanceSurf, m_LuminanceSurf);
D3D11_MAPPED_SUBRESOURCE resource;
UINT subresource = D3D11CalcSubresource(0, 0, 0);
HRESULT hr = m_pD3D11DeviceContext->Map(m_CPUAccessibleLuminanceSurf, subresource, D3D11_MAP_READ, 0, &resource);
BYTE* sptr = reinterpret_cast<BYTE*>(resource.pData);
BYTE* dptrY = nullptr; // point to the address of Y channel in output surface
//Store Image Pitch
int m_ImagePitch = resource.RowPitch;
int height = GetImageHeight();
int width = GetImageWidth();
for (int i = 0; i < height; i++)
{
memcpy_s(dptrY, m_ImagePitch, sptr, m_ImagePitch);
sptr += m_ImagePitch;
dptrY += m_ImagePitch;
}
m_pD3D11DeviceContext->Unmap(m_CPUAccessibleLuminanceSurf, subresource);
//Copying from GPU to CPU. Bad :(
m_pD3D11DeviceContext->CopyResource(m_CPUAccessibleChrominanceSurf, m_ChrominanceSurf);
hr = m_pD3D11DeviceContext->Map(m_CPUAccessibleChrominanceSurf, subresource, D3D11_MAP_READ, 0, &resource);
sptr = reinterpret_cast<BYTE*>(resource.pData);
BYTE* dptrUV = nullptr; // point to the address of UV channel in output surface
m_ImagePitch = resource.RowPitch;
height /= 2;
width /= 2;
for (int i = 0; i < height; i++)
{
memcpy_s(dptrUV, m_ImagePitch, sptr, m_ImagePitch);
sptr += m_ImagePitch;
dptrUV += m_ImagePitch;
}
m_pD3D11DeviceContext->Unmap(m_CPUAccessibleChrominanceSurf, subresource);
}
catch(HRESULT){}
return hr;
}
NV12 그리기 :
//
// Draw frame for NV12 texture
//
HRESULT DrawNV12Frame(ID3D11Texture2D* inputTexture)
{
HRESULT hr;
// If window was resized, resize swapchain
if (!m_bIntialized)
{
HRESULT Ret = InitializeNV12Surfaces(inputTexture);
if (!SUCCEEDED(Ret))
{
return Ret;
}
m_bIntialized = true;
}
m_pD3D11DeviceContext->CopyResource(m_ShaderResourceSurf, inputTexture);
D3D11_TEXTURE2D_DESC FrameDesc;
m_ShaderResourceSurf->GetDesc(&FrameDesc);
D3D11_SHADER_RESOURCE_VIEW_DESC ShaderDesc;
ShaderDesc.Format = FrameDesc.Format;
ShaderDesc.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE2D;
ShaderDesc.Texture2D.MostDetailedMip = FrameDesc.MipLevels - 1;
ShaderDesc.Texture2D.MipLevels = FrameDesc.MipLevels;
// Create new shader resource view
ID3D11ShaderResourceView* ShaderResource = nullptr;
hr = m_pD3D11Device->CreateShaderResourceView(m_ShaderResourceSurf, &ShaderDesc, &ShaderResource);
IF_FAILED_THROW(hr);
m_pD3D11DeviceContext->PSSetShaderResources(0, 1, &ShaderResource);
// Set resources
m_pD3D11DeviceContext->OMSetRenderTargets(1, &m_pLumaRT, nullptr);
m_pD3D11DeviceContext->PSSetShader(m_pPixelShaderLuma, nullptr, 0);
m_pD3D11DeviceContext->RSSetViewports(1, &m_VPLuminance);
// Draw textured quad onto render target
m_pD3D11DeviceContext->Draw(NUMVERTICES, 0);
m_pD3D11DeviceContext->OMSetRenderTargets(1, &m_pChromaRT, nullptr);
m_pD3D11DeviceContext->PSSetShader(m_pPixelShaderChroma, nullptr, 0);
m_pD3D11DeviceContext->RSSetViewports(1, &m_VPChrominance);
// Draw textured quad onto render target
m_pD3D11DeviceContext->Draw(NUMVERTICES, 0);
// Release shader resource
ShaderResource->Release();
ShaderResource = nullptr;
return S_OK;
}
초기화 셰이더 :
void SetViewPort(D3D11_VIEWPORT* VP, UINT Width, UINT Height)
{
VP->Width = static_cast<FLOAT>(Width);
VP->Height = static_cast<FLOAT>(Height);
VP->MinDepth = 0.0f;
VP->MaxDepth = 1.0f;
VP->TopLeftX = 0;
VP->TopLeftY = 0;
}
HRESULT MakeRTV(ID3D11RenderTargetView** pRTV, ID3D11Texture2D* pSurf)
{
if (*pRTV)
{
(*pRTV)->Release();
*pRTV = nullptr;
}
// Create a render target view
HRESULT hr = m_pD3D11Device->CreateRenderTargetView(pSurf, nullptr, pRTV);
IF_FAILED_THROW(hr);
return S_OK;
}
HRESULT InitializeNV12Surfaces(ID3D11Texture2D* inputTexture)
{
ReleaseSurfaces();
D3D11_TEXTURE2D_DESC lOutputDuplDesc;
inputTexture->GetDesc(&lOutputDuplDesc);
// Create shared texture for all duplication threads to draw into
D3D11_TEXTURE2D_DESC DeskTexD;
RtlZeroMemory(&DeskTexD, sizeof(D3D11_TEXTURE2D_DESC));
DeskTexD.Width = lOutputDuplDesc.Width;
DeskTexD.Height = lOutputDuplDesc.Height;
DeskTexD.MipLevels = 1;
DeskTexD.ArraySize = 1;
DeskTexD.Format = lOutputDuplDesc.Format;
DeskTexD.SampleDesc.Count = 1;
DeskTexD.Usage = D3D11_USAGE_DEFAULT;
DeskTexD.BindFlags = D3D11_BIND_SHADER_RESOURCE;
HRESULT hr = m_pD3D11Device->CreateTexture2D(&DeskTexD, nullptr, &m_ShaderResourceSurf);
IF_FAILED_THROW(hr);
DeskTexD.Format = DXGI_FORMAT_R8_UNORM;
DeskTexD.BindFlags = D3D11_BIND_RENDER_TARGET;
hr = m_pD3D11Device->CreateTexture2D(&DeskTexD, nullptr, &m_LuminanceSurf);
IF_FAILED_THROW(hr);
DeskTexD.CPUAccessFlags = D3D11_CPU_ACCESS_READ;
DeskTexD.Usage = D3D11_USAGE_STAGING;
DeskTexD.BindFlags = 0;
hr = m_pD3D11Device->CreateTexture2D(&DeskTexD, NULL, &m_CPUAccessibleLuminanceSurf);
IF_FAILED_THROW(hr);
SetViewPort(&m_VPLuminance, DeskTexD.Width, DeskTexD.Height);
HRESULT Ret = MakeRTV(&m_pLumaRT, m_LuminanceSurf);
if (!SUCCEEDED(Ret))
return Ret;
DeskTexD.Width = lOutputDuplDesc.Width / 2;
DeskTexD.Height = lOutputDuplDesc.Height / 2;
DeskTexD.Format = DXGI_FORMAT_R8G8_UNORM;
DeskTexD.Usage = D3D11_USAGE_DEFAULT;
DeskTexD.CPUAccessFlags = 0;
DeskTexD.BindFlags = D3D11_BIND_RENDER_TARGET;
hr = m_pD3D11Device->CreateTexture2D(&DeskTexD, nullptr, &m_ChrominanceSurf);
IF_FAILED_THROW(hr);
DeskTexD.CPUAccessFlags = D3D11_CPU_ACCESS_READ;
DeskTexD.Usage = D3D11_USAGE_STAGING;
DeskTexD.BindFlags = 0;
hr = m_pD3D11Device->CreateTexture2D(&DeskTexD, NULL, &m_CPUAccessibleChrominanceSurf);
IF_FAILED_THROW(hr);
SetViewPort(&m_VPChrominance, DeskTexD.Width, DeskTexD.Height);
return MakeRTV(&m_pChromaRT, m_ChrominanceSurf);
}
HRESULT InitVertexShader(ID3D11VertexShader** ppID3D11VertexShader)
{
HRESULT hr = S_OK;
UINT Size = ARRAYSIZE(g_VS);
try
{
IF_FAILED_THROW(m_pD3D11Device->CreateVertexShader(g_VS, Size, NULL, ppID3D11VertexShader));;
m_pD3D11DeviceContext->VSSetShader(m_pVertexShader, nullptr, 0);
// Vertices for drawing whole texture
VERTEX Vertices[NUMVERTICES] =
{
{ XMFLOAT3(-1.0f, -1.0f, 0), XMFLOAT2(0.0f, 1.0f) },
{ XMFLOAT3(-1.0f, 1.0f, 0), XMFLOAT2(0.0f, 0.0f) },
{ XMFLOAT3(1.0f, -1.0f, 0), XMFLOAT2(1.0f, 1.0f) },
{ XMFLOAT3(1.0f, -1.0f, 0), XMFLOAT2(1.0f, 1.0f) },
{ XMFLOAT3(-1.0f, 1.0f, 0), XMFLOAT2(0.0f, 0.0f) },
{ XMFLOAT3(1.0f, 1.0f, 0), XMFLOAT2(1.0f, 0.0f) },
};
UINT Stride = sizeof(VERTEX);
UINT Offset = 0;
D3D11_BUFFER_DESC BufferDesc;
RtlZeroMemory(&BufferDesc, sizeof(BufferDesc));
BufferDesc.Usage = D3D11_USAGE_DEFAULT;
BufferDesc.ByteWidth = sizeof(VERTEX) * NUMVERTICES;
BufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
BufferDesc.CPUAccessFlags = 0;
D3D11_SUBRESOURCE_DATA InitData;
RtlZeroMemory(&InitData, sizeof(InitData));
InitData.pSysMem = Vertices;
// Create vertex buffer
IF_FAILED_THROW(m_pD3D11Device->CreateBuffer(&BufferDesc, &InitData, &m_VertexBuffer));
m_pD3D11DeviceContext->IASetVertexBuffers(0, 1, &m_VertexBuffer, &Stride, &Offset);
m_pD3D11DeviceContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
D3D11_INPUT_ELEMENT_DESC Layout[] =
{
{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 }
};
UINT NumElements = ARRAYSIZE(Layout);
hr = m_pD3D11Device->CreateInputLayout(Layout, NumElements, g_VS, Size, &m_pVertexLayout);
m_pD3D11DeviceContext->IASetInputLayout(m_pVertexLayout);
}
catch (HRESULT) {}
return hr;
}
HRESULT InitPixelShaders()
{
HRESULT hr = S_OK;
// Refer https://codeshare.io/5PJjxP for g_PS_Y & g_PS_UV blobs
try
{
UINT Size = ARRAYSIZE(g_PS_Y);
hr = m_pD3D11Device->CreatePixelShader(g_PS_Y, Size, nullptr, &m_pPixelShaderChroma);
IF_FAILED_THROW(hr);
Size = ARRAYSIZE(g_PS_UV);
hr = m_pD3D11Device->CreatePixelShader(g_PS_UV, Size, nullptr, &m_pPixelShaderLuma);
IF_FAILED_THROW(hr);
}
catch (HRESULT) {}
return hr;
}