Lidar의 3D pointcloud로 작업하고 있습니다. 포인트는 다음과 같은 numpy 배열로 제공됩니다.
points = np.array([[61651921, 416326074, 39805], [61605255, 416360555, 41124], [61664810, 416313743, 39900], [61664837, 416313749, 39910], [61674456, 416316663, 39503], [61651933, 416326074, 39802], [61679969, 416318049, 39500], [61674494, 416316677, 39508], [61651908, 416326079, 39800], [61651908, 416326087, 39802], [61664845, 416313738, 39913], [61674480, 416316668, 39503], [61679996, 416318047, 39510], [61605290, 416360572, 41118], [61605270, 416360565, 41122], [61683939, 416313004, 41052], [61683936, 416313033, 41060], [61679976, 416318044, 39509], [61605279, 416360555, 41109], [61664837, 416313739, 39915], [61674487, 416316666, 39505], [61679961, 416318035, 39503], [61683943, 416313004, 41054], [61683930, 416313042, 41059]])
나는 크기의 큐브로 그룹화 내 데이터를 보관하고 싶은 50*50*50
모든 큐브가 일부 해쉬 인덱스 내의 NumPy와 인덱스 보존하도록 points
에 포함을 . 분할하기 위해 cubes = points \\ 50
출력을 다음에 할당 합니다.
cubes = np.array([[1233038, 8326521, 796], [1232105, 8327211, 822], [1233296, 8326274, 798], [1233296, 8326274, 798], [1233489, 8326333, 790], [1233038, 8326521, 796], [1233599, 8326360, 790], [1233489, 8326333, 790], [1233038, 8326521, 796], [1233038, 8326521, 796], [1233296, 8326274, 798], [1233489, 8326333, 790], [1233599, 8326360, 790], [1232105, 8327211, 822], [1232105, 8327211, 822], [1233678, 8326260, 821], [1233678, 8326260, 821], [1233599, 8326360, 790], [1232105, 8327211, 822], [1233296, 8326274, 798], [1233489, 8326333, 790], [1233599, 8326360, 790], [1233678, 8326260, 821], [1233678, 8326260, 821]])
원하는 출력은 다음과 같습니다.
{(1232105, 8327211, 822): [1, 13, 14, 18]),
(1233038, 8326521, 796): [0, 5, 8, 9],
(1233296, 8326274, 798): [2, 3, 10, 19],
(1233489, 8326333, 790): [4, 7, 11, 20],
(1233599, 8326360, 790): [6, 12, 17, 21],
(1233678, 8326260, 821): [15, 16, 22, 23]}
내 실제 포인트 클라우드에는 최대 수억 개의 3D 포인트가 포함되어 있습니다. 이런 종류의 그룹화를 수행하는 가장 빠른 방법은 무엇입니까?
나는 다양한 솔루션의 대부분을 시도했습니다. 다음은 포인트 크기가 약 2 천만이고 개별 큐브의 크기가 1 백만이라고 가정하고 시간 계산을 비교 한 것입니다.
팬더 [tuple (elem)-> np.array (dtype = int64)]
import pandas as pd
print(pd.DataFrame(cubes).groupby([0,1,2]).indices)
#takes 9sec
Defauldict [elem.tobytes () 또는 튜플-> 목록]
#thanks @abc:
result = defaultdict(list)
for idx, elem in enumerate(cubes):
result[elem.tobytes()].append(idx) # takes 20.5sec
# result[elem[0], elem[1], elem[2]].append(idx) #takes 27sec
# result[tuple(elem)].append(idx) # takes 50sec
numpy_indexed [int-> np.array]
# thanks @Eelco Hoogendoorn for his library
values = npi.group_by(cubes).split(np.arange(len(cubes)))
result = dict(enumerate(values))
# takes 9.8sec
팬더 + 차원 축소 [int-> np.array (dtype = int64)]
# thanks @Divakar for showing numexpr library:
import numexpr as ne
def dimensionality_reduction(cubes):
#cubes = cubes - np.min(cubes, axis=0) #in case some coords are negative
cubes = cubes.astype(np.int64)
s0, s1 = cubes[:,0].max()+1, cubes[:,1].max()+1
d = {'s0':s0,'s1':s1,'c0':cubes[:,0],'c1':cubes[:,1],'c2':cubes[:,2]}
c1D = ne.evaluate('c0+c1*s0+c2*s0*s1',d)
return c1D
cubes = dimensionality_reduction(cubes)
result = pd.DataFrame(cubes).groupby([0]).indices
# takes 2.5 seconds
그것은 다운로드 가능 cubes.npz
파일을 여기 와 명령을 사용하여
cubes = np.load('cubes.npz')['array']
성능 시간을 확인하십시오.
numpy_indexed
접근합니다. 맞습니다. 내가 사용하는 pandas
현재 나의 분류 프로세스.