나의 좋은 친구 파스칼 은 몇 년 전에 이것을 만들었습니다 ( 거의 Matlab에 있습니다)
#! /usr/bin/env python
#from scipy.interpolate import interpolate
from pylab import *
from numpy import *
def GaussianFilter(sigma,f):
"""Apply Gaussian filter to an image"""
if sigma > 0:
n = ceil(4*sigma)
g = exp(-arange(-n,n+1)**2/(2*sigma**2))
g = g/g.sum()
fg = zeros(f.shape)
for i in range(f.shape[0]):
fg[i,:] = convolve(f[i,:],g,'same')
for i in range(f.shape[1]):
fg[:,i] = convolve(fg[:,i],g,'same')
else:
fg = f
return fg
def clamp(x,xmin,xmax):
"""Clamp values between xmin and xmax"""
return minimum(maximum(x,xmin),xmax)
def myinterp(f,xi,yi):
"""My bilinear interpolator (scipy's has a segfault)"""
M,N = f.shape
ix0 = clamp(floor(xi),0,N-2).astype(int)
iy0 = clamp(floor(yi),0,M-2).astype(int)
wx = xi - ix0
wy = yi - iy0
return ( (1-wy)*((1-wx)*f[iy0,ix0] + wx*f[iy0,ix0+1]) +
wy*((1-wx)*f[iy0+1,ix0] + wx*f[iy0+1,ix0+1]) )
def mkwarp(f1,f2,sigma,phi,showplot=0):
"""Image warping by solving the Monge-Kantorovich problem"""
M,N = f1.shape[:2]
alpha = 1
f1 = GaussianFilter(sigma,f1)
f2 = GaussianFilter(sigma,f2)
# Shift indices for going from vertices to cell centers
iUv = arange(M) # Up
iDv = arange(1,M+1) # Down
iLv = arange(N) # Left
iRv = arange(1,N+1) # Right
# Shift indices for cell centers (to cell centers)
iUc = r_[0,arange(M-1)]
iDc = r_[arange(1,M),M-1]
iLc = r_[0,arange(N-1)]
iRc = r_[arange(1,N),N-1]
# Shifts for going from centers to vertices
iUi = r_[0,arange(M)]
iDi = r_[arange(M),M-1]
iLi = r_[0,arange(N)]
iRi = r_[arange(N),N-1]
### The main gradient descent loop ###
for iter in range(0,30):
### Approximate derivatives ###
# Compute gradient phix and phiy at pixel centers. Array phi has values
# at the pixel vertices.
phix = (phi[iUv,:][:,iRv] - phi[iUv,:][:,iLv] +
phi[iDv,:][:,iRv] - phi[iDv,:][:,iLv])/2
phiy = (phi[iDv,:][:,iLv] - phi[iUv,:][:,iLv] +
phi[iDv,:][:,iRv] - phi[iUv,:][:,iRv])/2
# Compute second derivatives at pixel centers using central differences.
phixx = (phix[:,iRc] - phix[:,iLc])/2
phixy = (phix[iDc,:] - phix[iUc,:])/2
phiyy = (phiy[iDc,:] - phiy[iUc,:])/2
# Hessian determinant
detD2 = phixx*phiyy - phixy*phixy
# Interpolate f2 at (phix,phiy) with bilinear interpolation
f2gphi = myinterp(f2,phix,phiy)
### Update phi ###
# Compute M'(phi) at pixel centers
dM = alpha*(f1 - f2gphi*detD2)
# Interpolate to pixel vertices
phi = phi - (dM[iUi,:][:,iLi] +
dM[iDi,:][:,iLi] +
dM[iUi,:][:,iRi] +
dM[iDi,:][:,iRi])/4
### Plot stuff ###
if showplot:
pad = 2
x,y = meshgrid(arange(N),arange(M))
x = x[pad:-pad,:][:,pad:-pad]
y = y[pad:-pad,:][:,pad:-pad]
phix = phix[pad:-pad,:][:,pad:-pad]
phiy = phiy[pad:-pad,:][:,pad:-pad]
# Vector plot of the mapping
subplot(1,2,1)
quiver(x,y,flipud(phix-x),-flipud(phiy-y))
axis('image')
axis('off')
title('Mapping')
# Grayscale plot of mapping divergence
subplot(1,2,2)
divs = phixx + phiyy # Divergence of mapping s(x)
imshow(divs[pad:-pad,pad:-pad],cmap=cm.gray)
axis('off')
title('Divergence of Mapping')
show()
return phi
if __name__ == "__main__": # Demo
from pylab import *
from numpy import *
f1 = imread('brain-tumor.png')
f2 = imread('brain-healthy.png')
f1 = f1[:,:,1]
f2 = f2[:,:,1]
# Initialize phi as the identity map
M,N = f1.shape
n,m = meshgrid(arange(N+1),arange(M+1))
phi = ((m-0.5)**2 + (n-0.5)**2)/2
sigma = 3
phi = mkwarp(f1,f2,sigma,phi)
phi = mkwarp(f1,f2,sigma/2,phi,1)
# phi = mkwarp(f1,f2,sigma/4,phi,1)
그라디언트 디센트 방식은 people.clarkson.edu/~ebollt/Papers/quadcost.pdf에서 설명합니다.