두 개의 독립적 인 균일 랜덤 변수 사이의 비율 분포


17

Supppse XY 에서 균일하게 분포 된 표준 [0,1]이며 독립적입니다. 의 PDF는 무엇 Z=Y/X입니까?

확률 이론 교과서의 대답은

fZ(z)={1/2,if 0z11/(2z2),if z>10,otherwise.

I는 대칭으로 안 궁금 ? 위의 PDF에 따르면 그렇지 않습니다.fZ(1/2)=fZ(2)


Y 의 도메인은 무엇입니까 ? XY
Sobi


2
이것이 사실이라고 생각하는 이유는 무엇입니까? 밀도 함수는 확률이 지점의 근처에 얼마나 단단히 포장을 설명하고, 그것을 명확하게 더 어렵다 근처에 2 보다 (1) / 2 (즉, 예를 들어 고려 Z는 항상 할 수있다 (1) / 2 상관없이 X 하지만, Z < 2X > 1 / 2 ). Z21/2Z1/2XZ<2X>1/2
dsaxton


3
나는 그것이 중복이라고 생각하지 않습니다. 그 질문은 PDF를 찾는 것입니다. 여기에는 PDF가 있습니다.
qed

답변:


19

올바른 논리는 독립 , Z = YX,YU(0,1)Z-1=XZ=YX 는 같은분포를 가지므로0<z<1 P { YZ1=XY0<z<1 CDF를 사용한 방정식은Y

P{YXz}=P{XYz}=P{YX1z}FZ(z)=1FZ(1z)
는 연속 랜덤 변수이므로P{Za}=P{Z>a}=1-FZ(a). 따라서 PDF의Z를만족 FZ(Z)=Z-2FZ(Z-1),YXP{Za}=P{Z>a}=1FZ(a)Z 따라서 f Z ( 1
fZ(z)=z2fZ(z1),0<z<1.
fZ(1아님)fZ(12)=4fZ(2) 생각한대로 2 )=fZ(2).fZ(12)=fZ(2)

14

이 분포 대칭입니다. 올바른 방향으로 보면됩니다.

(정확하게) 관찰 한 대칭은 X / Y = 1 / ( Y / X ) 가 동일하게 분포되어야한다는 것입니다. 비율과 거듭 제곱으로 작업 할 때 실제로 양의 실수 의 곱셈 그룹 내에서 작업하고 있습니다 . 위치 측정 불변의 아날로그 D λ = D (X) 상의 첨가제 실제 숫자 R이스케일 불변 측정 D μ = D (X) / XY/XX/Y=1/(Y/X)dλ=dxR dμ=dx/x양의 실수 의 곱셈 그룹 에서. 다음과 같은 바람직한 특성이 있습니다.R

  1. 는양의 상수 a : d μ ( a x ) = d ( a x ) 에 대해 변환 x a x 에서 변하지 않습니다.dμxaxa

    dμ(ax)=d(ax)ax=dxx=dμ.
  2. 는0이 아닌 숫자에 대한변환 x x b 에서공변량입니다. b : d μ ( x b ) = d ( x b )dμxxbb

    dμ(xb)=d(xb)xb=bxb1dxxb=bdxx=bdμ.
  3. 는지수를 통해 d λ 로 변환됩니다. d μ ( e x ) = d e xdμdλ 마찬가지로,dλ는로그를 통해다시dμ로변환됩니다.

    dμ(ex)=dexex=exdxex=dx=dλ.
    dλdμ

(3) establishes an isomorphism between the measured groups (R,+,dλ) and (R,,dμ). The reflection xx on the additive space corresponds to the inversion x1/x on the multiplicative space, because ex=1/ex.

Z=Y/Xdμz>0dλ:

fZ(z)dz=gZ(z)dμ=12{1dz=zdμ,if 0z11z2dz=1zdμ,if z>1.

That is, the PDF with respect to the invariant measure dμ is gZ(z), proportional to z when 0<z1 and to 1/z when 1z, close to what you had hoped.


This is not a mere one-off trick. Understanding the role of dμ makes many formulas look simpler and more natural. For instance, the probability element of the Gamma function with parameter k, xk1exdx becomes xkexdμ. It's easier to work with dμ than with dλ when transforming x by rescaling, taking powers, or exponentiating.

The idea of an invariant measure on a group is far more general, too, and has applications in that area of statistics where problems exhibit some invariance under groups of transformations (such as changes of units of measure, rotations in higher dimensions, and so on).


3
Looks like a very insightful answer. It's a pity I don't understand it at the moment. I will check back later.
qed

4

If you think geometrically...

In the X-Y plane, curves of constant Z=Y/X are lines through the origin. (Y/X is the slope.) One can read off the value of Z from a line through the origin by finding its intersection with the line X=1. (If you've ever studied projective space: here X is the homogenizing variable, so looking at values on the slice X=1 is a relatively natural thing to do.)

Consider a small interval of Zs, (a,b). This interval can also be discussed on the line X=1 as the line segment from (1,a) to (1,b). The set of lines through the origin passing through this interval forms a solid triangle in the square (X,Y)U=[0,1]×[0,1], which is the region we're actually interested in. If 0a<b1, then the area of the triangle is 12(10)(ba), so keeping the length of the interval constant and sliding it up and down the line X=1 (but not past 0 or 1), the area is the same, so the probability of picking an (X,Y) in the triangle is constant, so the probability of picking a Z in the interval is constant.

However, for b>1, the boundary of the region U turns away from the line X=1 and the triangle is truncated. If 1a<b, the projections down lines through the origin from (1,a) and (1,b) to the upper boundary of U are to the points (1/a,1) and (1/b,1). The resulting area of the triangle is 12(1a1b)(10). From this we see the area is not uniform and as we slide (a,b) further and further to the right, the probability of selecting a point in the triangle decreases to zero.

Then the same algebra demonstrated in other answers finishes the problem. In particular, returning to the OP's last question, fZ(1/2) corresponds to a line that reaches X=1, but fZ(2) does not, so the desired symmetry does not hold.


3

Just for the record, my intuition was totally wrong. We are talking about density, not probability. The right logic is to check that

1kfZ(z)dz=1/k1fZ(z)=12(11k)
,

and this is indeed the case.


1

Yea the link Distribution of a ratio of uniforms: What is wrong? provides CDF of Z=Y/X. The PDF here is just derivative of the CDF. So the formula is correct. I think your problem lies in the assumption that you think Z is "symmetric" around 1. However this is not true. Intuitively Z should be a skewed distribution, for example it is useful to think when Y is a fixed number between (0,1) and X is a number close to 0, thus the ratio would be going to infinity. So the symmetry of distribution is not true. I hope this help a bit.

당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.