(면책 조항 : 오늘은 잘 입력 할 수 없습니다 : 오른손이 골절되었습니다!)
다른 답변에서 비모수 적 테스트를 사용하라는 조언과는 달리, 매우 작은 표본 크기의 경우 이러한 방법이 유용하지 않다는 점을 고려해야합니다. 크기가 매우 작은 연구에서 관찰되는 경우 효과 크기가 크지 않으면 그룹 간 차이를 설정할 수없는 이유를 쉽게 이해할 수 있습니다. 그러나 비모수 적 방법은 그룹 간 차이의 크기를 신경 쓰지 않습니다. 따라서 두 그룹 간의 차이가 크더라도 표본 크기가 작 으면 비모수 검정이 항상 귀무 가설을 기각하지 못합니다.
두 그룹, 정규 분포, 동일한 분산을 예로 들어 보겠습니다. 그룹 1 : 평균 1.0, 7 샘플. 그룹 2 : 평균 5, 2 개의 샘플. 평균 사이에는 큰 차이가 있습니다.
wilcox.test(rnorm(7, 1), rnorm(2, 5))
Wilcoxon rank sum test
data: rnorm(7, 1) and rnorm(2, 5)
W = 0, p-value = 0.05556
계산 된 p- 값은 0.05556이며 귀무 가설을 기각하지 않습니다 (0.05). 이제 두 평균 사이의 거리를 10 배 늘려도 동일한 p- 값을 얻게됩니다.
wilcox.test(rnorm(7, 1), rnorm(2, 50))
Wilcoxon rank sum test
data: rnorm(7, 1) and rnorm(2, 50)
W = 0, p-value = 0.05556
이제 t- 검정으로 동일한 시뮬레이션을 반복하고 큰 차이 (평균 5 대 1)와 큰 차이 (평균 50 대 1)의 경우 p- 값을 관찰하십시오.