분석하기에 매우 복잡한 데이터 세트가 있으며 이에 대한 좋은 해결책을 찾을 수 없습니다.
여기에있는 것이 있습니다 :
1. 원시 데이터는 본질적으로 곤충 노래 녹음입니다. 각 노래는 여러 개의 버스트로 구성되며 각 버스트는 하위 장치로 구성됩니다. 모든 개인은 5 분 동안 기록되었습니다. 버스트 수와 레코딩에서의 위치는 버스트 당 하위 유닛 수뿐만 아니라 개인마다 매우 다를 수 있습니다.
2. 각 서브 유닛의 반송파 주파수 (기본 주파수)를 가지고 있는데 이것이 분석하고자하는 것입니다.
내 문제 :
1. 버스트 내의 주파수는 명백히 독립적이지 않습니다 (비록 안정적이지만 서브 유닛 n-1의 주파수는 서브 유닛 n에 영향을 미칩니다).
2. 버스트는 또한 레코딩 내에서 독립적이지 않습니다.
3. 시간이 지남에 따라 주파수가 떨어지면 독립성이 떨어집니다 (개인이 노래에 지치면 노래의 주파수가 점점 낮아집니다). 떨어지는 것은 선형 인 것 같습니다 .
4. 중첩 = 두 위치 A와 B에 대해 3 개의 복제 모집단이 있으므로 A1, A2, A3 & B1, B2, B3이 있습니다.
내가하고 싶은 것 :
1. 두 위치 간의 빈도 차이를 특성화합니다 (통계적으로 테스트).
2. 두 위치 사이의 주파수 하락을 특성화하십시오 (두 위치 중 하나에서 더 빨리 떨어지는 지 확인하십시오)
그것을하는 방법 :
그렇기 때문에 도움이 필요합니다. 잘 모르겠습니다. 내 경우는 일반적으로 함께 보이지 않는 문제를 결합한 것으로 보입니다. 혼합 모델, GAM, ARIMA, 임의 효과 및 고정 효과에 대해 읽었지만 가장 좋은 방법은 확실하지 않습니다. 그래도 (주파수 ~ 하위 단위 번호 n ) 그래프를 보면 두 위치 사이의 차이가 매우 분명합니다. 또한 온도 (주파수를 높이는 등)와 같은 다른 변수를 고려해야합니다.
나는 생각했다 :
복제본에서 개인을 중첩하고 위치 (개별 / 복제 / 위치) 내에 복제본을 중첩합니다.
임의의 '버스트'효과를 사용하므로 각 버스트 내의 변동성을 고려합니다.
고정 된 '레코딩 버스트 위치'효과를 사용하여 주파수 강하를 측정하십시오 (실제로 호핑 됨).
맞습니까?
이런 종류의 시나리오에 사용할 수있는 특별한 유형의 모델이 있습니까?