R 패키지 Lars
와 Glmnet
Lasso 문제를 해결하는 데 사용되는 R 패키지를 더 잘 이해하고 싶습니다 .
( 변수 및 샘플의 경우, 참조 www.stanford.edu/~hastie/Papers/glmnet.pdf를 ) 3 페이지pN
따라서 동일한 장난감 데이터 세트에 둘 다 적용했습니다. 불행하게도, 두 방법은 동일한 데이터 입력에 대해 동일한 솔루션을 제공하지 않습니다. 차이점이 어디에서 오는지 아는 사람이 있습니까?
결과를 다음과 같이 얻었습니다. 일부 데이터 (8 샘플, 12 기능, Toeplitz 디자인, 모든 것을 중심으로)를 생성 한 후 Lars를 사용하여 전체 올가미 경로를 계산했습니다. 그런 다음 Lars에 의해 계산 된 람다 시퀀스 (0.5를 곱한 값)를 사용하여 Glmnet을 실행했지만 동일한 솔루션을 얻길 희망했지만 그렇지 않았습니다.
솔루션이 비슷하다는 것을 알 수 있습니다. 그러나 차이점을 어떻게 설명 할 수 있습니까? 아래에서 내 코드를 찾으십시오. 여기에 관련 질문이 있습니다 : LASSO 솔루션을 계산하기위한 GLMNET 또는 LARS? 하지만 내 질문에 대한 답변은 포함되어 있지 않습니다.
설정:
# Load packages.
library(lars)
library(glmnet)
library(MASS)
# Set parameters.
nb.features <- 12
nb.samples <- 8
nb.relevant.indices <- 3
snr <- 1
nb.lambdas <- 10
# Create data, not really important.
sigma <- matrix(0, nb.features, nb.features)
for (i in (1:nb.features)) {
for (j in (1:nb.features)) {
sigma[i, j] <- 0.99 ^ (abs(i - j))
}
}
x <- mvrnorm(n=nb.samples, rep(0, nb.features), sigma, tol=1e-6, empirical=FALSE)
relevant.indices <- sample(1:nb.features, nb.relevant.indices, replace=FALSE)
x <- scale(x)
beta <- rep(0, times=nb.features)
beta[relevant.indices] <- runif(nb.relevant.indices, 0, 1)
epsilon <- matrix(rnorm(nb.samples),nb.samples, 1)
simulated.snr <-(norm(x %*% beta, type="F")) / (norm(epsilon, type="F"))
epsilon <- epsilon * (simulated.snr / snr)
y <- x %*% beta + epsilon
y <- scale(y)
lars :
la <- lars(x, y, intercept=TRUE, max.steps=1000, use.Gram=FALSE)
co.lars <- as.matrix(coef(la, mode="lambda"))
print(round(co.lars, 4))
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
# [1,] 0.0000 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
# [2,] 0.0000 0 0 0.0000 0.0000 0.1735 0.0000 0.0000 0.0000 0.0000
# [3,] 0.0000 0 0 0.2503 0.0000 0.4238 0.0000 0.0000 0.0000 0.0000
# [4,] 0.0000 0 0 0.1383 0.0000 0.7578 0.0000 0.0000 0.0000 0.0000
# [5,] -0.1175 0 0 0.2532 0.0000 0.8506 0.0000 0.0000 0.0000 0.0000
# [6,] -0.3502 0 0 0.2676 0.3068 0.9935 0.0000 0.0000 0.0000 0.0000
# [7,] -0.4579 0 0 0.6270 0.0000 0.9436 0.0000 0.0000 0.0000 0.0000
# [8,] -0.7848 0 0 0.9970 0.0000 0.9856 0.0000 0.0000 0.0000 0.0000
# [9,] -0.3175 0 0 0.0000 0.0000 3.4488 0.0000 0.0000 -2.1714 0.0000
# [10,] -0.4842 0 0 0.0000 0.0000 4.7731 0.0000 0.0000 -3.4102 0.0000
# [11,] -0.4685 0 0 0.0000 0.0000 4.7958 0.0000 0.1191 -3.6243 0.0000
# [12,] -0.4364 0 0 0.0000 0.0000 5.0424 0.0000 0.3007 -4.0694 -0.4903
# [13,] -0.4373 0 0 0.0000 0.0000 5.0535 0.0000 0.3213 -4.1012 -0.4996
# [14,] -0.4525 0 0 0.0000 0.0000 5.6876 -1.5467 1.5095 -4.7207 0.0000
# [15,] -0.4593 0 0 0.0000 0.0000 5.7355 -1.6242 1.5684 -4.7440 0.0000
# [16,] -0.4490 0 0 0.0000 0.0000 5.8601 -1.8485 1.7767 -4.9291 0.0000
# [,11] [,12]
# [1,] 0.0000 0.0000
# [2,] 0.0000 0.0000
# [3,] 0.0000 0.0000
# [4,] -0.2279 0.0000
# [5,] -0.3266 0.0000
# [6,] -0.5791 0.0000
# [7,] -0.6724 0.2001
# [8,] -1.0207 0.4462
# [9,] -0.4912 0.1635
# [10,] -0.5562 0.2958
# [11,] -0.5267 0.3274
# [12,] 0.0000 0.2858
# [13,] 0.0000 0.2964
# [14,] 0.0000 0.1570
# [15,] 0.0000 0.1571
lambda = (lambda_lars / 2) 인 glmnet :
glm2 <- glmnet(x, y, family="gaussian", lambda=(0.5 * la$lambda), thresh=1e-16)
co.glm2 <- as.matrix(t(coef(glm2, mode="lambda")))
print(round(co.glm2, 4))
# (Intercept) V1 V2 V3 V4 V5 V6 V7 V8 V9
# s0 0 0.0000 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
# s1 0 0.0000 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
# s2 0 0.0000 0 0 0.2385 0.0000 0.4120 0.0000 0.0000 0.0000
# s3 0 0.0000 0 0 0.2441 0.0000 0.4176 0.0000 0.0000 0.0000
# s4 0 0.0000 0 0 0.2466 0.0000 0.4200 0.0000 0.0000 0.0000
# s5 0 0.0000 0 0 0.2275 0.0000 0.4919 0.0000 0.0000 0.0000
# s6 0 0.0000 0 0 0.1868 0.0000 0.6132 0.0000 0.0000 0.0000
# s7 0 -0.2651 0 0 0.2623 0.1946 0.9413 0.0000 0.0000 0.0000
# s8 0 -0.6609 0 0 0.7328 0.0000 1.6384 0.0000 0.0000 -0.5755
# s9 0 -0.4633 0 0 0.0000 0.0000 4.6069 0.0000 0.0000 -3.2547
# s10 0 -0.4819 0 0 0.0000 0.0000 4.7546 0.0000 0.0000 -3.3929
# s11 0 -0.4767 0 0 0.0000 0.0000 4.7839 0.0000 0.0567 -3.5122
# s12 0 -0.4715 0 0 0.0000 0.0000 4.7915 0.0000 0.0965 -3.5836
# s13 0 -0.4510 0 0 0.0000 0.0000 5.6237 -1.3909 1.3898 -4.6583
# s14 0 -0.4552 0 0 0.0000 0.0000 5.7064 -1.5771 1.5326 -4.7298
# V10 V11 V12
# s0 0.0000 0.0000 0.0000
# s1 0.0000 0.0000 0.0000
# s2 0.0000 0.0000 0.0000
# s3 0.0000 0.0000 0.0000
# s4 0.0000 0.0000 0.0000
# s5 0.0000 -0.0464 0.0000
# s6 0.0000 -0.1293 0.0000
# s7 0.0000 -0.4868 0.0000
# s8 0.0000 -0.8803 0.3712
# s9 0.0000 -0.5481 0.2792
# s10 0.0000 -0.5553 0.2939
# s11 0.0000 -0.5422 0.3108
# s12 0.0000 -0.5323 0.3214
# s13 -0.0503 0.0000 0.1711
# s14 0.0000 0.0000 0.1571