하자 , 즉,이에 따라 배포 D × D 차원 Wishart의 평균과 분산 ν Ψ 자유와도 ν . E ( log | Λ | )에 대한 표현식을 원합니다. 여기서 | Λ | 결정자입니다.Λ∼WD(ν,Ψ)D×DνΨνE(log|Λ|)|Λ|
나는 이것에 대한 답변을 약간 봤으며 충돌하는 정보를 얻었습니다. 이 백서 에서는
여기서ψ는(⋅)디 감마 함수를 나타내고,(D)를
E(log|Λ|)=Dlog2+log|Ψ|+∑i=1Dψ(ν−i+12)
ψ(⋅)ddxlogΓ(x); the paper does not give a source for this fact as far as I can tell. This is also the formula used on the
wikipedia page for the Wishart, which sites Bishop's Pattern Recognition text.
On the other hand, google turned up this discussion with a linked paper that states that
νD|Λ||Ψ|∼χ2νχ2ν−1⋯χ2ν−D+1.(†)
E(log|Λ|)=Dlog2−Dlogν+log|Ψ|+∑i=1Dψ(ν−i+12)
which is derived using the fact that
E(logχ2ν)=log(2)+ψ(ν/2). I checked this calculation starting from
(†) and it seems okay, but we have an extra
−Dlogν.