임의의 효과를 사용해야 할 때와 그것이 언제 필요한지 이해하려고합니다. 내가 경험 한 4 개 이상의 그룹 / 개인이 있다면 (15 개의 개별 무스) 경험에 근거한 경험이있다. 이 무스 중 일부는 총 29 회 시험을 위해 2 번 또는 3 번 실험되었습니다. 위험도가 높은 환경에있을 때와 다르게 작동하는지 알고 싶습니다. 그래서 나는 그 개인을 무작위 효과로 설정할 것이라고 생각했습니다. 그러나 나는 그들의 반응에 많은 변화가 없기 때문에 개인을 무작위 효과로 포함시킬 필요가 없다고 들었습니다. 내가 알아낼 수없는 것은 개인을 임의의 효과로 설정할 때 실제로 고려해야 할 것이 있는지 테스트하는 방법입니다. 초기 질문은 다음과 같습니다. 개인이 좋은 설명 변수인지, 그리고 고정 된 효과인지 확인하기 위해 어떤 테스트 / 진단을 할 수 있습니까? 히스토그램? 산점도? 그리고 그 패턴에서 내가 무엇을 찾을 것입니다.
나는 개인과 함께 임의의 효과로 모델을 실행했지만 다음과 같은 상태에서 http://glmm.wikidot.com/faq를 읽었습니다 .
lmer 모델과 해당 lm fit 또는 glmer / glm을 비교하지 마십시오. 로그 우도는 비례하지 않습니다 (즉, 다른 가산 항을 포함합니다)
그리고 이것은 임의 효과가 있거나없는 모델을 비교할 수 없다는 것을 의미한다고 가정합니다. 그러나 나는 어쨌든 그들 사이에서 무엇을 비교 해야하는지 정말로 알지 못했습니다.
Random 효과가있는 모델에서 RE는 어떤 종류의 증거 또는 중요성을 알기 위해 출력을 보려고했습니다.
lmer(Velocity ~ D.CPC.min + FD.CPC + (1|ID), REML = FALSE, family = gaussian, data = tv)
Linear mixed model fit by maximum likelihood
Formula: Velocity ~ D.CPC.min + FD.CPC + (1 | ID)
Data: tv
AIC BIC logLik deviance REMLdev
-13.92 -7.087 11.96 -23.92 15.39
Random effects:
Groups Name Variance Std.Dev.
ID (Intercept) 0.00000 0.00000
Residual 0.02566 0.16019
Number of obs: 29, groups: ID, 15
Fixed effects:
Estimate Std. Error t value
(Intercept) 3.287e-01 5.070e-02 6.483
D.CPC.min -1.539e-03 3.546e-04 -4.341
FD.CPC 1.153e-04 1.789e-05 6.446
Correlation of Fixed Effects:
(Intr) D.CPC.
D.CPC.min -0.010
FD.CPC -0.724 -0.437
랜덤 효과 = 0 인 개별 ID의 분산과 SD를 볼 수 있습니다. 어떻게 가능합니까? 0은 무엇을 의미합니까? 맞습니까? "무작위 효과가 필요하지 않으므로 ID를 사용하는 변형이 없기 때문에"라고 말한 내 친구가 맞습니까? 그렇다면 고정 효과로 사용 하시겠습니까? 그러나 변화가 거의 없다는 사실이 그것이 우리에게 많은 것을 말해주지 않을 것이라는 것을 의미하지 않습니까?