DMwR 패키지도 시도해 볼 수 있습니다 .
3 NN의 경우에 실패하여 'knnImputation (x, k = 3)의 오류 : 이웃을 계산하기위한 완전한 경우가 충분하지 않습니다.'
그러나 2 시도는 제공합니다.
> knnImputation(x,k=2)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.59091360 -1.2698175 0.5556009 -0.1327224 -0.8325065 0.71664000
[2,] -1.27255074 -0.7853602 0.7261897 0.2969900 0.2969556 -0.44612831
[3,] 0.55473981 0.4748735 0.5158498 -0.9493917 -1.5187722 -0.99377854
[4,] -0.47797654 0.1647818 0.6167311 -0.5149731 0.5240514 -0.46027809
[5,] -1.08767831 -0.3785608 0.6659499 -0.7223724 -0.9512409 -1.60547053
[6,] -0.06153279 0.9486815 -0.5464601 0.1544475 0.2835521 -0.82250221
[7,] -0.82536029 -0.2906253 -3.0284281 -0.8473210 0.7985286 -0.09751927
[8,] -1.15366189 0.5341000 -1.0109258 -1.5900281 0.2742328 0.29039928
[9,] -1.49504465 -0.5419533 0.5766574 -1.2412777 -1.4089572 -0.71069839
[10,] -0.35935440 -0.2622265 0.4048126 -2.0869817 0.2682486 0.16904559
[,7] [,8] [,9] [,10]
[1,] 0.58027159 -1.0669137 0.48670802 0.5824858
[2,] -0.48314440 -1.0532693 -0.34030385 -1.1041681
[3,] -2.81996446 0.3191438 -0.48117020 -0.0352633
[4,] -0.55080515 -1.0620243 -0.51383557 0.3161907
[5,] -0.56808769 -0.3696951 0.35549191 0.3202675
[6,] -0.25043479 -1.0389393 0.07810902 0.5251606
[7,] -0.41667318 0.8809541 -0.04613332 -1.1586756
[8,] -0.06898363 -1.0736161 0.62698065 -1.0373835
[9,] 0.30051583 -0.2936140 0.31417921 -1.4155193
[10,] -0.68180034 -1.0789745 0.58290920 -1.0197956
complete.cases (x)를 사용하여 충분한 관측치를 테스트 할 수 있습니다. 여기서 해당 값은 k 이상이어야합니다.
이 문제를 극복하는 한 가지 방법은 1) NA 임계 값을 증가 시키거나 2) 관측치 수를 증가시켜 요구 사항 (즉, 불완전한 행)을 완화하는 것입니다.
첫 번째는 다음과 같습니다.
> x = matrix(rnorm(100),10,10)
> x.missing = x > 2
> x[x.missing] = NA
> complete.cases(x)
[1] TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
> knnImputation(x,k=3)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0.86882569 -0.2409922 0.3859031 0.5818927 -1.50310330 0.8752261 -0.5173105 -2.18244988 -0.28817656 -0.63941237
[2,] 1.54114079 0.7227511 0.7856277 0.8512048 -1.32442954 -2.1668744 0.7017532 -0.40086348 -0.41251883 0.42924986
[3,] 0.60062917 -0.5955623 0.6192783 -0.3836310 0.06871570 1.7804657 0.5965411 -1.62625036 1.27706937 0.72860273
[4,] -0.07328279 -0.1738157 1.4965579 -1.1686115 -0.06954318 -1.0171604 -0.3283916 0.63493884 0.72039689 -0.20889111
[5,] 0.78747874 -0.8607320 0.4828322 0.6558960 -0.22064430 0.2001473 0.7725701 0.06155196 0.09011719 -1.01902968
[6,] 0.17988720 -0.8520000 -0.5911523 1.8100573 -0.56108621 0.0151522 -0.2484345 -0.80695513 -0.18532984 -1.75115335
[7,] 1.03943492 0.4880532 -2.7588922 -0.1336166 -1.28424057 1.2871333 0.7595750 -0.55615677 -1.67765572 -0.05440992
[8,] 1.12394474 1.4890366 -1.6034648 -1.4315445 -0.23052386 -0.3536677 -0.8694188 -0.53689507 -1.11510406 -1.39108817
[9,] -0.30393916 0.6216156 0.1559639 1.2297105 -0.29439390 1.8224512 -0.4457441 -0.32814665 0.55487894 -0.22602598
[10,] 1.18424722 -0.1816049 -2.2975095 -0.7537477 0.86647524 -0.8710603 0.3351710 -0.79632184 -0.56254688 -0.77449398
> x
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0.86882569 -0.2409922 0.3859031 0.5818927 -1.5031033 0.8752261 -0.5173105 -2.18244988 -0.28817656 -0.63941237
[2,] 1.54114079 0.7227511 0.7856277 0.8512048 -1.3244295 -2.1668744 0.7017532 -0.40086348 -0.41251883 0.42924986
[3,] 0.60062917 -0.5955623 0.6192783 -0.3836310 0.0687157 1.7804657 0.5965411 -1.62625036 1.27706937 0.72860273
[4,] -0.07328279 -0.1738157 1.4965579 -1.1686115 NA -1.0171604 -0.3283916 0.63493884 0.72039689 -0.20889111
[5,] 0.78747874 -0.8607320 0.4828322 NA -0.2206443 0.2001473 0.7725701 0.06155196 0.09011719 -1.01902968
[6,] 0.17988720 -0.8520000 -0.5911523 1.8100573 -0.5610862 0.0151522 -0.2484345 -0.80695513 -0.18532984 -1.75115335
[7,] 1.03943492 0.4880532 -2.7588922 -0.1336166 -1.2842406 1.2871333 0.7595750 -0.55615677 -1.67765572 -0.05440992
[8,] 1.12394474 1.4890366 -1.6034648 -1.4315445 -0.2305239 -0.3536677 -0.8694188 -0.53689507 -1.11510406 -1.39108817
[9,] -0.30393916 0.6216156 0.1559639 1.2297105 -0.2943939 1.8224512 -0.4457441 -0.32814665 0.55487894 -0.22602598
[10,] 1.18424722 -0.1816049 -2.2975095 -0.7537477 0.8664752 -0.8710603 0.3351710 -0.79632184 -0.56254688 -0.77449398
여기에 두 번째 예가 있습니다 ...
x = matrix(rnorm(1000),100,10)
x.missing = x > 1
x[x.missing] = NA
complete.cases(x)
[1] TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
[22] FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[43] TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[64] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
k = 3 개의 완전한 행이 충족되므로 k = 3에 대해 대치 할 수 있습니다.
> head(knnImputation(x,k=3))
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0.01817557 -2.8141502 0.3929944 0.1495092 -1.7218396 0.4159133 -0.8438809 0.6599224 -0.02451113 -1.14541016
[2,] 0.51969964 -0.4976021 -0.1495392 -0.6448184 -0.6066386 -1.6210476 -0.3118440 0.2477855 -0.30986749 0.32424673
...